期刊文献+

二维稀疏信号的联合压缩感知方法研究 被引量:3

A Two Dimensional Signal Jointly Reconstruction Method Based on Compressive Sensing
下载PDF
导出
摘要 传统的压缩感知理论主要考虑一维稀疏信号的感知和重构。当待处理信号是二维(2 dimension,2D)或多维时,若直接将信号向量化处理,会造成感知矩阵维度急剧变大,使得存储和后续的重构复杂度大大增加,同时重构性能下降。为实现对2D信号的高效感知和快速重构,本文首先构建一个针对2D信号的模拟信息转换(Analog-to-Information Conversion,AIC)感知框架,通过行、列同时感知的策略实现量测值获取,以达到降低量测值存储维度的目的;其次针对压缩采样后的量测数据,提出一种2D快速迭代收缩阈值算法(2D Fast Iterative Shrinkage-Thresholding Algorithm,2D-FISTA),并对该算法的基本迭代格式、收敛条件、参数选择以及算法收敛速度等问题进行了详细分析。仿真结果表明,所研究的算法可直接处理2D信号,具有重构速度快和存储量低等优势。 Traditional compressive sensing theories mainly consider sampling and reconstructing a 1 Dimensional( 1D) signal. For a 2 dimensional( 2D) signal,if reshaped into a vector,the required size of the sensing matrix becomes dramatically large,which increases the storage and computational complexity of reconstruction significantly. To efficiently sample and reconstruct 2D signals exhibiting sparsity in 2D separable dictionaries,we first construct an analog-to-information conversion( AIC) frame to jointly sample 2D signals in column and row instead of vectoring,which requires much lower storage. Then a novel 2D fast iterative shrinkage-thresholding algorithm( 2D-FISTA) is proposed. The basic iterate format,convergence,parameter choices of the 2D-FISTA are thoroughly analyzed. It is shown that the proposed method can handle2 D signals directly with much lower storage and computational complexity.
机构地区 空军预警学院
出处 《信号处理》 CSCD 北大核心 2016年第4期395-403,共9页 Journal of Signal Processing
关键词 压缩感知 2D稀疏 模拟信息转换器 快速迭代收缩阈值算法(FISTA) 快速 compressive sensing 2D sparse analog-to-information conversion fast iterative shrinkage-thresholding algo rithm(FISTA) fast
  • 相关文献

参考文献17

  • 1唐文娟,赵生妹,郑宝玉.一种混合支撑集模型的联合半迭代硬阈值追踪重构算法[J].信号处理,2015,31(8):924-931. 被引量:3
  • 2Candes E. The restricted isometry property and its impli- cation for compressed sensing [ J ]. Comptes rendus del Cademie dea Sciences, Series 1, 2008, 346 9-10): 589-592.
  • 3Yang J F, Zhang Y H. Novel compressive sensmg-based dechirp-keystone algorithm for synthetic aperture radar imaging of moving target[ J]. IET Radar, Sonar & Navi- gation, 2015, 9(5): 509-518.
  • 4Yair R, Adrian S. Compressed imaging with a separable sensing operator [ J ]. IEEE Signal Process. Letters, 2009, 16(6) : 449-452.
  • 5Marco F D, Richard G B. Kronecker Compressive sens- ing[J]. IEEE Transaction on Image Process, 2012, 21 (2) : 494-504.
  • 6Lu G, Thong T. Do, Trac D. Tran. Fast compressive ima- ging using scrambled block Hadamard ensemble [ C ]// Presented at the 16th Eur. Signal Process. Conf. , Lau- sanne, Switzerland, 2008.
  • 7Hao F, Sergiy A V, Hal J, et al. Permutation meets par- allel compressed sensing: How to relax restricted isometry property for 2D sparse signals [J].IEEE Transaction on Signal Processing, 2014, 62(1) : 196-210.
  • 8FANG Yong,WU JiaJi,HUANG BorMin.2D sparse signal recovery via 2D orthogonal matching pursuit[J].Science China(Information Sciences),2012,55(4):889-897. 被引量:15
  • 9Amain E ,Massoud B Z, Hamid A M. Two-dimensional ran- dom projection[J]. Signal Processing,2011,91:1589-1603.
  • 10Jahromi M J, Kahaei M H. Two-dimensional iterative adap- tive approach for sparse matrix solution[J]. Electronics Let-ters, 2014, 50(1):45-47.

二级参考文献57

  • 1林建华,郭广报.半迭代方法的收敛性[J].厦门大学学报(自然科学版),2007,46(1):14-17. 被引量:5
  • 2Candes E,Romberg J,Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete fre- quency information. IEEE Trans Inform Theory,2006,52: 489-509.
  • 3Candes E,Tao T. Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Inform Theory,2006,52: 5406-5425.
  • 4Donoho D. Compressed sensing. IEEE Trans Inform Theory,2006,52: 1289-1306.
  • 5Candes E,Tao T. Decoding by linear programming. IEEE Trans Inform Theory,2005,51: 4203-4215.
  • 6Tropp J,Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inform Theory,2007,53: 4655-4666.
  • 7Pope G. Compressive sensing: a summary of reconstruction algorithms. Master thesis. Zrich: Eidgenssische Technische Hochschule. 2009.
  • 8Rivenson Y,Stern A. Compressed imaging with a separable sensing operator. IEEE Signal Process Lett,2009,16: 449-452.
  • 9Ghaffari A,Babaie-Zadeh M,Jutten C. Sparse decomposition of two dimensional signals. In: IEEE International Conference on Acoustics,Speech and Signal Processing,ICASSP,Taipei,2009. 3157-3160.
  • 10Liu Y,Wu M Y,Wu S J. Fast OMP algorithm for 2D angle estimation in MIMO radar. IET Electronics Lett,2010,46: 444-445.

共引文献33

同被引文献18

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部