期刊文献+

多相随机子采样FFT模拟信息转换器 被引量:2

Implementation for Analog-to-information Convertor via Multiphase Random Sampling and Sub-sampled FFT
下载PDF
导出
摘要 模拟信息转换器是实现稀疏信号压缩感知的一种装置,常用的主要结构是随机解调下采样,但是通常存在采样恢复精度低以及压缩率不高的问题。为提高压缩率及采样恢复精度,本文提出了一种多相随机子采样FFT模拟信息转换器实现方法,该模拟信息转换器由多相分频移相器、伪随机数发生器、多路并行低速ADC以及累加器组成。该方法利用信号在频域循环卷积后下采样等效于信号随机子采样FFT的特点,实现对信号的压缩采样,能有效提高信号压缩率及采样恢复精度,且结构简单、易于实现。仿真实验验证了此方法的有效性。 Analog-to-information convertor( AIC) is a device which converts a sparse analog signal to compressed information. Down-sampled random demodulator is a major structure of AIC,which,however,exits the problems of low sampling recovery precision and low compression ratio. In order to improve compressed ratio and sampling recovery precision,an implementation for AIC via multiphase random sampling and sub-sampled FFT is proposed. It consists of multi-phase frequency divider,pseudo random number generator,analog-to-digital converter( ADC) and accumulator. This AIC uses the property that down sampling after circular convolution in frequency domain is equivalent to multiphase random sampling in time domain and then applying sub-sampled FFT,making it an effective way of signal compressing sampling. The structure of this AIC is simple and easy to implement. Experiment results show the effectiveness of the proposed method.
出处 《信号处理》 CSCD 北大核心 2016年第4期457-462,共6页 Journal of Signal Processing
基金 武器装备预研项目(XXXX020602) 高等学校博士学科点专项科研基金(20124408110002) 通用航空综合运行支持系统(2011BAH24B12)
关键词 信息处理技术 压缩感知 模拟信息转换器 多相随机采样 子采样FFT information processing technology compressed sensing(CS) analog-to-information convertor(AIC) multiphase random sampling sub-sampled FFT
  • 相关文献

参考文献15

  • 1Candes E J. Compressive sampling[ C]// Proceedings of the International Congress of Mathematicians. Madrid, Spain : [ s. n. ] , 2006 : 1433-1452.
  • 2Candes E J, Romberg J, Tao T. Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Signal Processing, 2004, 52 (2) :489-509.
  • 3Donoho D L. Compressed Sensing[ J]. IEEE Transactions on Signal Processing,2006,52(4) :1289-1306.
  • 4Meng Y, Gong Z. Compressive sensing based parameter estimation for monostatic MIMO noise radar[ J]. Progress in Electromagnetic Research Letters, 2012, 30 : 133-143.
  • 5陈胜垚,席峰,刘中.多通道混沌调制模拟-信息转换[J].电子与信息学报,2014,36(1):152-157. 被引量:4
  • 6Donoho D L, Huo X. Uncertainty Principles and ideal a- tomic decompositions[ J]. IEEE Transactions on Informa- tion Theory, 2001, 47 (7) :2845-2862.
  • 7Tropp J A, Wakin M B, Duarte M F. Random filters for compressive sampling and reconstruction [ C ] // Proc. Of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2006:872-875.
  • 8Kirolos S, Laska J, Wakin M, et al. Analog-to-informa- tion conversion via random demodulation [ C ]// Design, Applications, Integration and Software, 2006 IEEE Dal- las/CAS Workshop on. IEEE, 2006: 71-74.
  • 9Smith G E, Diethe T. Compressed sampling for pulse Doppler radar [ C ]// Proc. of the IEEE Radar Conference, 2010: 887- 892.
  • 10Abaft O, Lira F, Chen F, et al. Why analog-to-informa- tion converters suffer in high-bandwidth sparse signal ap- plication[J].IEEE Trans. on Circuits and Systems I: Regular Papers, 2013, 60(9): 2273-2248.

二级参考文献7

共引文献16

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部