期刊文献+

整体叶盘叶片磨抛工艺参数优化 被引量:1

Optimized Surface Roughness of Grinding and Polishing in Blisk
下载PDF
导出
摘要 以整体叶盘作为加工对象,为提高其叶片表面加工质量,降低表面粗糙度,展开整体叶盘磨抛工艺参数(如砂带粒度、砂带线速度、进给速度)的优化。首先,进行整体叶盘数控磨抛试验,其次,应用信噪比优化磨抛工艺参数,最后,选最优工艺参数对整体叶盘进行磨抛试验,加工表面测量结果表明,整体叶盘表面粗糙度显著降低,满足叶盘表面加工质量要求。 Take blisk as research subjects,to improve surface quality of the blisk blade and reduce surface roughness,the paper carry out optimizing the blisk grinding and polishing process parameters,such as particle size,belt speed and feed rate.Firstly,conducted grinding and polishing experiment.Secondly,applied the method of signal to noise ratio to optimize the grinding and polishing parameter.Finally,select the optimized process parameters to conduct grinding and polishing test,the result shows that the surface roughness of blisk is significantly is lower to meet the requirements of processing quality.
出处 《航空制造技术》 2016年第8期97-99,104,共4页 Aeronautical Manufacturing Technology
关键词 整体叶盘 表面粗糙度 磨抛工艺 信噪比试验设计 工艺参数优化 Blisk Surface roughness Grinding and polishing process Signal to noise ratio Optimized pocess parameter
  • 相关文献

参考文献9

  • 1段继豪,史耀耀,李小彪,张军锋.整体叶盘柔性磨头自适应抛光实现方法[J].航空学报,2011,32(5):934-940. 被引量:23
  • 2YONGA Y, KULKARNI S S, RYS M, et al. Development of a surface roughness model in end milling of nHAP using PCD insert[J]. Ceramics International, 2012, 38(8): 6865-6871.
  • 3HOW H, TSAI J T, LIN B T, et ai. Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm[J]. Expert Systems with Applications, 2009, 36(2):3216-3222.
  • 4HANAFI I, KHAMLICHI A, CABRERA F M, et al. Prediction of surface roughness in turning of PEEK cf30 by using an artificial neural network[J].Journal of the Chinese Institute of Industrial Engineers, 2012, 29(5):337-347.
  • 5ABOU-EL-HOSSEIN K A, MOOLA MOHAN R , GORIN A. Surface roughness prediction in the end milling parameters of aluminum nitride ceramic by response surface methodology[J]. Advanced Materials Research, 2012, 154: 626-633.
  • 6Wang Hongxiang Li Dan Dong shen Precision Engineering Research Institute, Harbin Institute of Technology, Harbin 150001, China.SURFACE ROUGHNESS PREDICTION MODEL FOR ULTRAPRECISION TURNING ALUMINIUM ALLOY WITH A SINGLE CRYSTAL DIAMOND TOOL[J].Chinese Journal of Mechanical Engineering,2002,15(2):153-156. 被引量:8
  • 7池龙珠.磨削条件的优化及表面粗糙度的预测与控制[J].中国机械工程,2011,22(2):158-161. 被引量:6
  • 8窦毅芳,刘飞,张为华.响应面建模方法的比较分析[J].工程设计学报,2007,14(5):359-363. 被引量:75
  • 9MYERS R H. MONTGOMERY D C, Anderson-Cook C M. Respanse surface methodology: process and product optimization using designed experiments[M]. John Wiley & Sons, 2016.

二级参考文献32

共引文献104

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部