摘要
近年来,有机无机杂化金属卤化物钙钛矿太阳能电池的光电转换效率从最初3.8%提升到现在的21.0%.快速的效率提升主要得益于钙钛矿材料本身的光电特性—适宜的直隙半导体禁带宽度、较低的激子束缚能、较高的摩尔消光系数、优良的载流子双极性扩散特性.然而,高效率钙钛矿太阳能电池的器件稳定性和迟滞效应现象仍未得到很好的改善,是当前急需要解决的挑战性难题.本文首先回顾了钙钛矿太阳能电池的发展历程和器件结构的演变,结合本课题组在反式p-i-n结构钙钛矿太阳能电池方面的研究进展,试图阐明一些由电池结构带来的本质性差异和一些设计实现钙钛矿太阳能电池高效率、高稳定性、消除迟滞效应的普遍规律.着重总结了基于聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)基与NiO基两类p型空穴传输材料的反式结构钙钛矿电池方面的代表性研究进展.
In recent years, the power conversion efficiencies(PCEs) of organic-inorganic metal halide perovskite solar cells(PSCs) have been dramatically elevated from 3.8% to 21.0%. This remarkable progress is closely associated with the specific photoelectrical properties of perovskite light absorbers, such as appropriate and direct band gap, low excition binding energy, high molar extinction coefficient, and specific dipolar charge transfer property. However, there have been some challenging issues of stability and hysteresis, which should be urgently addressed for high efficiency photovoltaic devices. In this short overview, we combine the latest evolution on PSCs device structures in the world and our research progress on inverted p-i-n structure solar cells, and try to clarify some intrinsic difference among structures and some general principle to design high performance PSCs with high stability and eliminated hysteresis. The current status of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT: PSS) and nickel oxide(Ni O) p-type hole transport layer have been specially summarized.
出处
《中国科学:化学》
CAS
CSCD
北大核心
2016年第4期342-356,共15页
SCIENTIA SINICA Chimica
基金
国家自然科学基金(编号:21103058)
国家重点基础研究发展计划(编号:2011CBA00703)项目资助
关键词
钙钛矿太阳能电池
反式平面结构
氧化镍
空穴传输层
界面工程
迟滞效应
大面积
稳定性
perovskite solar cell
inverted planar structure
nickel oxide
hole transport layer
interfacial engineering
hysteresis
large area
stability