期刊文献+

基于HBase数据分类的压缩策略选择方法 被引量:8

Compression strategies selection method based on classification of HBase data
下载PDF
导出
摘要 为解决现有的HBase数据压缩策略选择方法未考虑数据的冷热性,以及在选择过程中存在片面性和不可靠性的缺陷,提出了基于HBase数据分类的压缩策略选择方法。依据数据文件的访问频度将HBase数据划分为冷热数据,并限定具体的访问级别;在此基础上增加评估层,综合考虑基于相邻区和统计列的选择方法,提出基于数据访问级别的压缩策略选择方法。仿真实验及结果表明,提出的压缩策略选择方法不仅节省了存储空间,还大大提高了数据查询的性能。 Most of the current compression strategies selection methods for HBase data did not consider whether the data was cold or hot. Besides, problem of incompleteness and unreliability existed during selection process. To address the problems above, a compression strategies selection method based on classification of HBase data was put forward. HBase data was classified into cold and hot data according to the access frequency of each data file and an access level would be designated to each file. On this base, an evaluation layer was added and a compression strategies selection method based on access level with integration of neighbor sector and statistic column based selection methods. Simulation experiments and results demonstrate that the proposed compression strategies selection method based on classification of HBase data can not only save storage space but also greatly improve the query performance of HBase data.
出处 《通信学报》 EI CSCD 北大核心 2016年第4期12-22,共11页 Journal on Communications
基金 国家自然科学基金资助项目(No.61201163)~~
关键词 数据压缩 HBASE 压缩策略选择方法 冷热数据 data compression HBase compression strategies selection method cold and hot data
  • 相关文献

参考文献8

二级参考文献119

  • 1梅立军,周强,臧路,陈祖舜.知网与同义词词林的信息融合研究[J].中文信息学报,2005,19(1):63-70. 被引量:28
  • 2葛伟平,汪卫,周皓峰,施伯乐.基于隐私保护的分类挖掘[J].计算机研究与发展,2006,43(1):39-45. 被引量:20
  • 3ZHOU Tao,FU Zhongqian,WANG Binghong.Epidemic dynamics on complex networks[J].Progress in Natural Science:Materials International,2006,16(5):452-457. 被引量:36
  • 4董振东,董强,郝长伶.知网的理论发现[J].中文信息学报,2007,21(4):3-9. 被引量:98
  • 5Herman T Tavani. Information privacy, data mining, and the intemet[ J]. Ethics and Information Technology, 1999, 1 (2) : 137 - 145.
  • 6A Cavoukian. Data mining: staking [ OL ]. http://www, ipc. on. ca/ a claim on your privacy sion-Papers/Discussion-Papers-Summary/? id = 342. 1998-01- 01/2009-09-22.
  • 7Vassilios S Verykios, Elisa Bertino, Igor Nai Fovino, Loredana P Provenza, Yucel Saygha, Yannis Theodoridis. State-of-the-art in privacy preserving data mining[J] .ACM SIGMOD Record, 2004,33(1) :50 - 57.
  • 8Elisa Bertino, Igor Nai Fovino, Loredana Parasiliti Provenza. A framework for evaluating privacy preserving data mining algorithms [J]. Data Mining and Knowledge Discovery, 2005, 11 (2) : 121 - 154.
  • 9Rakesh Agrawal,Ramakrishnan Srikant.Privacy-preserving data mining[J]. ACM SIGMOD Record, 2000,29 ( 2 ) : 439 - 450.
  • 10Dakshi Agrawal, Charu C Aggarwal. On the design and quantification of privacy preserving data mining algorithms [ A ]. In Proceedings of the Twentieth ACM SIGMOD-SIGACTSIGART Symposium on Principles of Database Systems[ C]. New York: ACM,2001.247- 255.

共引文献780

同被引文献63

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部