期刊文献+

颗粒群组方法中关键参数的选取

Key Parameter Selection in Particle-Size-Grouping Method
下载PDF
导出
摘要 为了深入了解颗粒群组方法的特点,提出了修正最大群组数方法,研究了颗粒群组方法中的两个关键参数(体积增量和最大群组数)对数量密度和体积分数的影响.结果表明:传统最大群组数在计算颗粒数量密度时比较准确,修正最大群组数在计算颗粒体积分数时比较准确.随着颗粒体积增量的增加,传统最大群组数得到的颗粒数量密度的预测值降低,而颗粒体积分数的预测值增加.随着颗粒体积增量的增加,修正最大群组数得到的颗粒数量密度的预测值下降,而颗粒体积分数的预测值呈振荡趋势. In order to have a deep insight into the particle-size-grouping( PSG) method,a modified maximum group number method was developed to study the effects of two key parameters( the particle volume increment and the maximum group number) on the particle number density and volume fraction. The results showed that a more accurate value of the particle number density was obtained by using the PSG method with the traditional maximum group number while a more accurate value of the particle volume fraction was obtained by using the PSG method with the modified maximum group number. With the increase of the particle volume increment,the predicted value of the particle number density decreased,while the predicted value of the particle volume fraction increased when using the PSG method with the traditional maximum group number. With the increase of particle volume increment,the predicted value of the particle number density decreased,while the predicted value of the particle volume fraction showed a trend of oscillation when using the PSG method with the modified maximum group number.
作者 雷洪 赵岩
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期508-511,516,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金和上海宝钢集团联合资助项目(U1460108) 辽宁省百千万人才工程培养项目(2013921073) 北京科技大学钢铁冶金新技术国家重点实验室开放课题(KF13-10)
关键词 颗粒 碰撞聚合 Smoluchowski模型 颗粒群组法 颗粒体积增量 最大群组数 particle collision and aggregation Smoluchowski model particle-size-grouping method particle volume increment maximum group number
  • 相关文献

参考文献11

  • 1Zhang L, Pluschkell W. Nucleation and growth kinetics of inclusions during liquid steel deoxidation [ J ]. Ironmaking and Steelmaking,2003,30(2) :106 - 110.
  • 2Zhang J, Lee H G. Numerical modeling of nucleation and growth of inclusions in molten steel based on mean processing parameters [ J]. ISIJ International, 2004,44 ( 10 ) : 1629 - 1638.
  • 3Lei H, Nakajima K, He J. Mathematical model for nucleation, Ostwald ripening and growth of inclusion in molten steel[ J]. ISIJ International,2010,50 ( 12 ) : 1735 - 1745.
  • 4Nakaoka T, Taniguchi S, Matsumoto K, et al. Particle-size- grouping method of inclusion agglomeration and itsapplication to water model experiments ( J ]. ISIJ International,2001,41 ( 10 ) : 1103 - 1111.
  • 5Thomas D N, Judd S J, Fawcett N. Flocculation modeling : a review [ J]. Water Research, 1999,33 (7) : 1579 - 1592.
  • 6Miki Y, Thomas B G, Denissov A, et al. Model of inclusion removal during RH degassing of steel [ J ]. Iron and Steelmaker, 1997,24 ( 8 ) : 31 - 38.
  • 7Zhang L, Taniguchi S, Cai K. Fluid flow and inclusion removal in continuous casting tundish[J ] . Metallurgical and Materials Transactions B,2000,31 ( 2 ) .. 253 - 266.
  • 8Lei H, Wang L, Wu Z, et al. Collision and coalescence of alumina particles in the vertical bending continuous caster [ J ]. ISIJ International, 2002,42 ( 7 ) : 717 - 725.
  • 9Kwon Y J, Zhang J, Lee H G. A CFD-based nucleation- growth-removal model for inclusion behavior in a gas- agitated ladle during molten steel deoxidation [ J ]. ISIJ International,2008,48 (7) :891 -900.
  • 10Lei H, Zhao Y, Geng D. Mathematical model for cluster- inclusion' s collision-growth in inclusion cloud at continuous casting mold [ J]. ISIJ International, 2014,54 ( 7 ) : 1629 - 1637.

二级参考文献9

  • 1Thomas D N, Judd S J, Fawcett N. Flocculation modeling: a review[J]. Water Research, 1999,33(7) : 1579 - 1592.
  • 2Miki Y, Thomas B G, Deniasov A, et al. Model of inclusion removal during RH degassing of steel [ J ]. Iron and Steelmaker, 1997,24 (8) : 31 - 38.
  • 3Zhang L, Taniguchi S. Cai K. Fluid flow and inclusion removal in continuous casting tundish[J ]. Metallurgical and Materials Transactions B, 2000,31(2):253 -266.
  • 4Li X, Logan B E. Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid [J]. Environmental Sciencee & Technology, 1997,31 (4): 1237 -1242.
  • 5Lei H, Wang L Z, Wu Z N, et al. Collision and coalescence of alumina particles in the vertical bending continuous caster [J]. ISU International, 2002,42(7) :717- 725.
  • 6Lei H, Xu G J, He J C. Magnetic field, flow field and inclusion collision growth in a continuous caster with EMBR [J ]. Chemical Engineering & Technology, 2007,30 (12) : 1650 -1658.
  • 7Nakaoka T, Taniguchi S, Matstmoto K, et al. Particle-size- grouping method of inclusion agglomeration and its application to water model experiments[J ]. ISIJ International, 2001,41 (10):1103- 1111.
  • 8Lei H, He J C. A dynamic model of alumina inclusion collision growth in the continuous caster I J ]. Journal of Non- Crystalline SolMs, 2006,352 (36/37) : 3772 - 3780.
  • 9王大志,闫杨,汪定伟,王洪峰.基于OpenMP求解无容量设施选址问题的并行PSO算法[J].东北大学学报(自然科学版),2008,29(12):1681-1684. 被引量:7

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部