摘要
利用电子背散射衍射(EBSD)技术,原位跟踪AZ31镁合金轧制板材室温下沿轧向拉伸时的晶粒取向变化。对变形过程的滑移系和孪晶启动机进行分析。结果表明:变形过程主要由〈a〉基面和柱面滑移系开动而实现,晶粒取向无明显变化,大量〈a〉位错滑移的产生,使得变形后小角度晶界增加明显。晶粒中拉伸孪晶是试样在拉伸变形过程中产生的,而非在试样拉伸后的卸载过程中产生。
In-situ tracking on grain orientation evolution of AZ31 Mg alloy rolled sheet during tension along rolling direction at room temperature was conducted by the electron backscatter diffraction tech nique, and activations of slip systems and twinning during former deformation were analyzed. Analysis results show that, former deformation is accomplished mainly by 〈a〉 basal and prismatic slip activations, and there are not obvious changes for grain orientation, numerous 〈a〉 dislocation slip activations obviously increase the percentage of low angle grain boundaries. For extension twins within grain, they are activated in the process of specimen tension, but not in the process of unloading after tension.
出处
《材料工程》
EI
CAS
CSCD
北大核心
2016年第4期1-8,共8页
Journal of Materials Engineering
基金
国家自然科学基金资助项目(50775211
51174189)
辽宁省教育厅资助项目(L2011024)