期刊文献+

引力搜索算法优化脉冲耦合网络的图像检索方法 被引量:3

Image Retrieval Method Using Pulse-Coupled Network Optimized by Gravitational Search Algorithm
下载PDF
导出
摘要 启发于脉冲耦合网络(PCN)在视觉特征表示方面的优势,提出使用引力搜索算法(GSA)优化脉冲耦合网络(PCN)来提取图像的视觉特征,对PCN的参数使用优化机制来提高所获取的特征质量,由此来提高基于内容的图像检索(CBIR)的分类和检索结果.首先对学习的图像用PCN生成特征码;然后计算特征码间的距离,距离变量作为适应度函数的输入;最后利用引力搜索算法优化PCN的几个变量,进行参数更新.在Caltech256和Corel数据库上的实验结果表明提出方法的有效性,相比于改进的相关反馈方法(IRF)、颜色边缘结合离散小波变换方法(CE-DWT)和色矩结合局部二进制模式方法(CM-LBP),提出的方法检索精确度至少提高了5%,查全率提高4%左右. Inspired by the visual features represented advantages in pulse coupling network(PCN),the method using gravitational search algorithm(GSA)to optimize pulse coupling network(PCN)to extract visual features is proposed,in which the parameters of PCN is applied to improve the quality of the acquired characteristics by optimization mechanism,thereby improving the classification and searching results of content-based image retrieval(CBIR).Firstly,signature is generated by PCN using learning images.Then,the distance between the signature is calculated,and distance is being as the input of fitness function.Finally,gravitational search algorithm is used to optimize several variables of PCN,updating the parameters.The effectiveness of proposed method is verified by the experimental results on Caltech256 and Corel database,compared with method of improved relevance feedback(IRF),color edge combined discrete wavelet transform(CE-DWT)and color moments combined with local binary pattern(CM-LBP),the proposed method improves the retrieval accuracy by 5% at least,and the recall accuracy improves about 4%.
作者 雷虎 樊泽明
出处 《湘潭大学自然科学学报》 CAS 北大核心 2016年第1期86-89,共4页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(11102162) 陕西省教育厅重点项目(13BZ69)
关键词 脉冲耦合网络 引力搜索算法 基于内容的图像检索 适应度函数 特征码 pulse-coupled network gravitational search algorithm content-based image retrieval fitness function signature
  • 相关文献

参考文献7

  • 1李宗民,唐志辉.九宫格空间框架的图书图像检索[J].中国图象图形学报,2013,18(3):325-329. 被引量:8
  • 2LUSZCZKIEWICZ-PIATEK M,SMOLKA B. Robust image retrieval based on mixture modeling of weighted spatio-color information[J]. Image Processing Communications Challenges,2015,42(12):85-93.
  • 3邓翔宇,马义德.PCNN参数自适应设定及其模型的改进[J].电子学报,2012,40(5):955-964. 被引量:34
  • 4RASHEDI E,NEZAMABADI P H,SARYAZDI S. Improving the precision of CBIR systems by color and texture feature adaptation using GSA[J]. Intelligent Systems in Electrical Engineering,2013,4(3):43-56.
  • 5Caltech256 database[D/OL]http://www. vision, caltech. edu /Image_Datasets/Caltech256/.
  • 6AGARWAL S, VERMA A K, DIXIT N. Content based image retrieval using color edge detection and discrete wavelet transform[C]//Issues and Challenges in Intelligent Computing Techniques (ICICT),2014 International Conference on. IEEE,2014:368-372.
  • 7CHOUDHARY R, RAINA N, CHAUDHARY N, et al. An integrated approach to content based image re-trieval[C]//Advances in Computing, Communications and Informatics (ICACCI,2014 International Conference on IEEE,2014:2404-2410.

二级参考文献26

  • 1毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法[J].电子学报,2005,33(4):647-650. 被引量:58
  • 2马义德,齐春亮.基于遗传算法的脉冲耦合神经网络自动系统的研究[J].系统仿真学报,2006,18(3):722-725. 被引量:50
  • 3赵峙江,赵春晖,张志宏.一种新的PCNN模型参数估算方法[J].电子学报,2007,35(5):996-1000. 被引量:21
  • 4Eckhom R, Reitlxxck H J,Amdt M, Dicke P. Feature linking via synchronization among distdbuted assemblies:simulation of results from cat visual cortex[ J]. Neural Computation, 1990,2 (3) :293 - 307.
  • 5Johnson J L, Padgett M L. PCNN models and applications[ J]. IEEE Trans on Neural Networks, 1999,10(3) :480 - 498.
  • 6Broussard R P, Rogers S K, Oxley M E, et al. Physiologically motivated image fusion for object detection using a pulse cou- pled neural network [ J ]. IEEE Trans on Neural Networks, 1999,10(3) :554 - 563.
  • 7Ranganath H S, Kuntimad G. Object detection using pulse cou- pled mural networks [ J ]. IEEE Trans on Neural Networks, 1999,10(3) :615 - 620.
  • 8Kunfimad G, Ranganath H S. Perfect image segmentation using pulse coupled neural networks [ J ]. IEEE Trans Neural Net- works, 1999,10(3) :591 - 598.
  • 9Min Li, Wei Cai, Zlaeng Tan. Adaptive parameters determina- tion method of pulse coupled neural network based on water valley area[A]. Neural Information Processing pt. 2[ C ]. Hong Kong, 2006:713 - 720.
  • 10Yuli Chen, Sung-Kee Park, Yide Ma.A new automatic param- eter setting method of a simplified PCNN for image segmenta- tion[J].IEEE, Transactions on Neural Networks, 2011,22(6) : 880 - 892.

共引文献40

同被引文献13

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部