摘要
针对局部均值分解(Local Mean Decomposition,LMD)方法存在的端点效应问题,提出一种基于梯度变化的端点效应抑制方法对局部均值分解进行改进,通过仿真对比不同端点抑制方法的效果,证明了该方法的准确性;针对滚动轴承故障振动信号为一系列调制信号的特点,将改进的局部均值分解方法应用于滚动轴承故障诊断中;利用奇异值分解降噪方法降低噪声污染对分解结果的影响;通过实验验证了该方法在滚动轴承故障诊断中的有效性和可行性。
To decrease the error induced by the boundary effect in the process of LMD, a new method based on the changing grades was introduced. After comparison with other methods by simulation, this method was proved to be more accurate. As the vibration signal of the faulty rolling element bearing was composed by a series of modulating signal, the improved LMD was applied to the fault diagnosis of bearing. This application, in which the SVD was used for noise reduction, was oroved to be effective and feasible bv exneriment.
出处
《振动与冲击》
EI
CSCD
北大核心
2016年第8期183-186,共4页
Journal of Vibration and Shock
基金
湖北省自然科学基金资助项目
关键词
局部均值分解
端点效应
奇异值分解
滚动轴承
故障诊断
LMD
boundary effect
singular value decomposition(SVD)
rolling element bearing
fault diagnosis