期刊文献+

面向在线产品评论数据的有效性建模与测度研究 被引量:1

Modeling and measure research for online product review data
下载PDF
导出
摘要 为提高对虚假评论的识别精度并对评论数据的有效性进行准确预测,提出一种面向在线产品数据的有效性建模与测量方法。通过结合基于核主成分的特征提取方法和最小二乘支持向量机对在线产品的虚假评论进行识别,基于排序Logit构建回归模型对量化的评论数据进行有效性判别预测。实验结果表明,该方法在虚假评论识别和数据有效性分析方面效果良好,可以为消费者提供更为精确的消费参考、为商业机构提供更具辨识意义的评论数据,具有良好的应用价值。 To analyze online reviews effectively and provide valuable information to both consumers and companies,this paper proposed data modeling and measure system for online product reviews. Firstly,this paper proposed the identifying method based on the KPCA-LS-SVM( kernel principal component analysis least squares support vector machine) model for fake reviews problem. Meanwhile,the paper solved the problem of review data validation analysis by ordinal logistic probability model for the problem of review data validation analysis. At last,experiments were conducted on the real dataset. The results show that it not only can effectively classify fake online reviews,but also improve discriminant validity of the data efficiently.
出处 《计算机应用研究》 CSCD 北大核心 2016年第5期1308-1311,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(71272018) 国家自然科学基金(地区基金)资助项目(61262036)
关键词 在线产品评论 核主成分分析 虚假评论识别 排序Logistic 有效性分析 online product review kernel principal component analysis fake review identification ordinal Logistic efficiency analysis
  • 相关文献

参考文献13

  • 1Liu Jingjing, Cao Yunbo, Lin C Y, et al. Low-quality product review detection in opinion summarization [ C ]//Proc of Joint Conference on Empirical Methods in Natual Language Processing and Computational Natural Language Learning. 2007:334- 342.
  • 2Qu Zhe, Zhang Hart, Li Haizheng. Determinants of online merchant rating: content analysis of consumer comments about Yahoo merchants [ J]. Decision Support Systems,2008,46 (1) :440-449.
  • 3Picazo-Vela S, Chou S Y, Melcher A J, et al. Why provide an online reviewf An extended theory of planned behavior and the role of Big- Five personality traits [ J ]. Computers in Human Behavior, 2010, 26(4) :685-696.
  • 4Kim S M, Pantel P, Chklovki T, et al. Automatically assessing review helpfulness [ C ]//Proc of Conference on Empirical Methods in Natural Language Processing. [ S. 1. ] : Association for Computational Linguis- tics ,2006:423-430.
  • 5Zhang Ziqiong, Ye Qiang, Law R, et al. The impact of e-word-of-mouth on the online popularity of restaurants : a comparison of consumer re- views and editor reviews [ J ]. international Journal of Hospitality Management,2010,29(4 ) :694-700.
  • 6吴丽华,冯建平,曹均阔.中文网络评论的IT产品特征挖掘及情感倾向分析[J].计算机与数字工程,2012,40(11):52-54. 被引量:8
  • 7Liu Ying, Jin Jian, Ji Ping,et al. Identifying helpful online reviews: a product designer' s perspective [ J ]. Computer-Aided Design ,2013, 45(2) : 180-194.
  • 8汪海燕,黎建辉,杨风雷.支持向量机理论及算法研究综述[J].计算机应用研究,2014,31(5):1281-1286. 被引量:206
  • 9黄文宇,覃团发,唐振华.基于模糊支持向量机的面向语义图像检索算法[J].计算机应用研究,2011,28(5):1987-1990. 被引量:8
  • 10徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123

二级参考文献69

共引文献340

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部