期刊文献+

基于可信标签扩展传递的跨领域倾向性分析

Cross-domain opinion analysis based on bootstrapping and propagation of trust-worthy labels
下载PDF
导出
摘要 针对传统监督分类方法不能很好地处理不同领域中服从不同分布的数据这一问题进行了研究,提出了一种基于可信标签扩展传递的半监督分类算法。情感种子词与目标领域待标注词之间按照相似度进行标签传递,将具有可信标签的词迭代移入情感种子词集实现扩展,结合目标领域词的先验情感分计算出最终情感分,从而有效地实现跨领域倾向性分析。实验表明,该方法能够大幅度提高跨领域情感分析的准确率。 Due to relying too much on abundant labeled data from the training set,the traditional supervised classification methods could not perform well when processing imbalanced data from various domains. In order to solve this problem,this paper proposed a half-supervised classification algorithm based on the bootstrapping and propagation of trust-worthy labels by integrating the LPA algorithm and the concept of bootstrapping. It conducted label propagation between the seed words and the unlabeled words from the target domain according to their similarities. Then it chose the words that were with trust-worthy labels to extend the set of seed words iteratively. After that,it further improved the sentiment scores of the words from the target domain by use of their prior scores. Experimental results indicate that the proposed algorithm can improve the performance of cross-domain opinion analysis dramatically.
出处 《计算机应用研究》 CSCD 北大核心 2016年第5期1379-1383,共5页 Application Research of Computers
基金 国家自然基金资助项目(61373148) 国家社科基金资助项目(12BXW040) 国家教育部人文社科基金资助项目(14YJC860042) 山东省自然科学基金资助项目(ZR2012FM038 ZR2014FL010) 山东省优秀中青年科学家奖励基金资助项目(BS2013DX033) 山东省高等学校科技计划资助项目(J12LN21) 山东省社科规划项目(12BXWJ01)
关键词 自然语言处理 跨领域 倾向性分析 标签传递 natural language processing cross-domain opinion analysis label propagation
  • 相关文献

参考文献15

  • 1Pang Bo, Lee L, Vaithyanathan S. Thumbs up: sentiment classifica- tion using machine learning techniques [ C ]// Proc of Conference on Empirical Methods in Natural Language Processing. Philadelphia: As- sociation for Computational Linguistics, 2002 : 79- 86.
  • 2唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:136
  • 3Blizer J, McDonald R, Pereira F. Domain adaptation with structural correspondence learning [ C ]// Proc of Conference on Empirical Methods in Natural Language Processing. 2006 : 120-128.
  • 4Pan S J, Ni Xiaochuan, Sun Jiantao, et al. Cross-domain sentiment classification via spectral feature alignment [ C ]//Proc of the 19th In-temational Conference on World Wide Web. 2010: 751-760.
  • 5Wu Qiong, Tan Songbo, Zhai Haijun, et al. SentiRank: cross-do- main graph ranking for sentiment classification [ C ]//Proc of IEEE/ WIC/ACM International Joint Conference on Web Intelligence and In- telligent Agent Technologies. 2009 : 309- 314.
  • 6Chen Wet, Zhou Jingyu. A text classifier with domain adaptation for sentiment classification [ C ]// Proc of the 6th Asia Information Re- trieval Conference. 2010 : 61-72.
  • 7魏现辉,张绍武,杨亮,林鸿飞.基于加权SimRank的跨领域文本情感倾向性分析[J].模式识别与人工智能,2013,26(11):1004-1009. 被引量:11
  • 8吴琼,谭松波,许洪波,段洣毅,程学旗.基于随机游走模型的跨领域倾向性分析研究[J].计算机研究与发展,2010,47(12):2123-2131. 被引量:11
  • 9Zhu Xiaojin, Ghahramani Z. Learning from labeled and unlabeled data with label propagation, CMU- CALD-02- 107 [ R ]. Pittsburghers: Carnegie Mellon University,2002.
  • 10Liu Kang, Xu Liheng, Zhao Jun. Extracting opinion targets and opi- nion words from online reviews with graph co- ranking [ C ]// Proc of the 52nd Annual Meeting of the Association for Computational Lin- guistics. 2014 : 314-324.

二级参考文献51

  • 1陈炯,张永奎.一种基于词聚类的中文文本主题抽取方法[J].计算机应用,2005,25(4):754-756. 被引量:17
  • 2谭松波.中文情感挖掘语料--chnsenticorp[EB/OL].[2010-05-01].http://www.searchforum.org.cn/tansongbo/corpus-senti.htm.
  • 3Pang B,Lee L,Vaithyanathan S.Thumbs up? Sentiment classification using machine learning techniques[C]//Proc of EMNLP 2002.Morristown,NJ,USA:ACL,2002:79-86.
  • 4Ku L,Liang Y,Chen H.Opinion extraction,summarization and tracking in news and blog corpora[C]//Proc of AAAI 2006.Boston,Massachusetts:ACL,2006.
  • 5赵军,许洪波,黄萱菁,等.中文倾向性分析评测技术报告[R].北京:中文信息学会,2008.
  • 6Aue A,Gamon M.Customizing sentiment classifiers to new domains:A case study[C]//Proc of RANLP 2005.Borovets,Bulgaria:RANLP,2005.
  • 7Blitzer J,Dredze M,Pereira F.Biographies,bollywood,boom-boxes and blenders:Domain adaptation for sentiment classification[C]//Proc of ACL 2007.Prague,Czech Republic:ACL,2007:440-447.
  • 8Tan S,Wang Y,Wu G,et al.Using unlabeled data to handle domain-transfer problem of semantic detection[C]//Proc of SAC 2008.New York:ACM,2008:896-903.
  • 9Tan S,Cheng X,Wang Y,et al.Adapting nave Bayes to domain adaptation for sentiment analysis[C]//Proc of ECIR 2009.Berlin:Springer,2009:337-349.
  • 10Gamon M,Aue A.Automatic identification of sentiment vocabulary:Exploiting low association with known sentiment terms[C]//Proc of the ACL Workshop on Feature Engineering for Machine Learning in NLP.Ann Arbor,Michigan:ACL,2005:57-64.

共引文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部