期刊文献+

基于Spark Streaming的僵尸主机检测算法 被引量:2

Detection bots using Spark Streaming
下载PDF
导出
摘要 随着宽带互联网的广泛应用,产生了同时针对互联网服务提供商和用户的新型威胁,僵尸网络。僵尸网络通过多类传播和感染程序,构建一个可一对多控制的网络,操控大量僵尸主机发起DDo S攻击、发送垃圾邮件、偷窃敏感数据和钓鱼等恶意行为。基于一种分布式实时处理框架,提出一种分布式的僵尸主机检测算法。该算法能够充分利用网络流量的统计数据IPFIX,在无须深度包解析的情况下,能够识别僵尸主机行为。同时,使用该算法实现了IPFIXScanner原型系统。系统的鲁棒性和可扩展性是设计该系统的核心原则。实验表明,IPFIXScanner原型在使用指定僵尸家族样本训练的情况下,对于特定类的僵尸主机能够获得较高的检出率和较低的误报率。在核心交换机上的测试结果表明,IPFIXScanner能够进行分布式的实时检测,加速比接近线性,验证了Spark Streaming引擎在分布式流处理方面的优势,以及用于僵尸主机检测方面的可行性。 The wide use of broadband Internet connections has given rise to a new threat against Internet service providers and end users as well. Botnets are vast networks of compromised hosts under the control of single masters who possess the ability to launch large-scale malicious activities such as spamming,DDo S attacks,identity theft,and phishing with privacy-violating spyware and other forms of malicious software. This paper's goal is to introduce a novel distributed algorithm for malicious( potential bots) activity recognition based on network traffic statistics generated by IPFIX,where IPFIX related is correlated as the host IPFIX graph structure,and a feature extraction method based on the spark streaming is leveraged for exacting implicit characteristics. Furthermore,in order to verify the validity of the algorithm,this paper established an IPFIXScanner detection prototype system. Scalability and robustness were the main principles during the design of the system architecture. The experimental results show that the IPFIXScanner is able to detect botnet participant computers( bots) with the help of novel features originating from various local networks,while the algorithms provide utmost anonymity to network operators,and has approximate linear speedup. It proves the feasibility of applying spark streaming engine to distributed bots detection.
出处 《计算机应用研究》 CSCD 北大核心 2016年第5期1497-1503,1513,共8页 Application Research of Computers
基金 国家自然科学基金资助项目(60875029)
关键词 网络安全 云计算 僵尸主机检测 IPFIX network security cloud computing bots detection IPFIX
  • 相关文献

参考文献27

  • 1Gu Guofei, Perdisci R, Zhang Junjie, et al. BotMiner: clustering analysis of network traffic for protocol-and structure-Independent bet- net detection[ C]//Proc of the 17th USENIX Security Symposium. 2008 : 139-154.
  • 2Wang Wei, Daniels T E. A graph based approach toward network fo- rensics analysis [ J]. ACM Yrans on Information System Security, 2008,12(1) :1-33.
  • 3Liao Niandong, Tian Shengfeng, Wang Tinghua. Network forensics based on fuzzy logic and expert system[ J]. Computer Communica- tions, 2009,32 ( 17 ) : 1881 - 1892.
  • 4Mephemon D. Worldwide infrastructure security report, volume V [ R]. [ S. 1. ] :Arbor Networks, 2010.
  • 5Porras P, Saidi H, Yegneswaran V. A multi-perspective analysis of the storm (peaeomm) worm[ R]. [ S. 1. ] :Computer Science Labora- tory, SRI International, 2007.
  • 6Masters G. Mariposa botnet mastermind nabbed [ EB/OL ]. bttp :// www. scmagazineus, eom/mariposa-botnet-mastermind-nabbed/arti- ele/175721/.
  • 7Hofstede R, Celeda P, Trammell B, et al. Flow monitoring ex- plained : from packet capture to data analysis with netFlow and IPFIX [ J]. IEEE Communications Surveys & Tutorials, 2014,16 (4) : 2037-2064.
  • 8McI-Iugh P R. Try to remember: psychiatry' s clash over meaning, memory, and mind[ M]. [ S. 1. ] :Dana Press, 2008.
  • 9Gu Guofei, Zhang Junjie, Lee W. BotSniffer: detecting botnet com- mand and control channels in network traffic [ C ]//Proc of the 15th Annual Network and Distributed System Security Symposium. 2008.
  • 10Yen T F, Reiter M K. Traffic aggregation for malware detection [ C ]//Pmc of Detection of Intrusions and Malware, and Vulnerability Assessment. Berlin:Springer, 2008: 207-227.

二级参考文献18

  • 1Lu Wei, Rammidi G, and Ghorbani A. Clustering botnet communication traffic based on n-gram feature selectionj.I]. Computer Communications, 2011, 34(3): 502-514.
  • 2Gu Guo-fei, Perdisci R, ZhangJun-jie, et al.. BotMiner: clustering analysis of network traffic for protocol- and structure-independent botnet detection[C]. Proceedings of the 17th Conference on Security Symposium, SanJose, CA, USA, 2008: 378-393.
  • 3Gu Guo-fei, Porras P, Yegneswaran V, et al.. BotHunter: detecting mal ware infection through IDSdriven dialog correlation[C]. Proceedings of the 16th USENIX Security Symposium, Boston, MA, USA, 2007: 167-182.
  • 4FrancoisJ, Wang S, State R, et al.. BotTrack: tracking botnets using NetFlow and PageRank[J]. Lecture Nodes in Computer Science, 2011, 6640: 1-14.
  • 5Coskun B, Dietrich S, and Memon N. Friends of an enemy: identifying local members of peer-to-peer botnets using mutual contacts[C]. Proceedings of Annual Computer Security Applications Conference, Austin, TX, USA, 2010: 131-140.
  • 6Nagaraja S, Mittal P, Hong C, et al.. BotGrep: finding P2P bots with structured graph analysis[C]. Proceedings of the 19th USENIX Conference on Security, Washington, USA, 2010, 7: 1-16.
  • 7GoebelJ and Holz T. Rishi: identify bot contaminated hosts by ire nickname evaluation[C]. Proceedings of USENIX HotBots'07, Berkeley, CA, USA, 2007: 163-174.
  • 8Prasad K, Reddy A, and Karthik M. Flooding attacks to internet threat monitors (ITM): modeling and counter measures using botnet and honeypots],l]. InternationalJournal of Computer Science & Information Technology, 2011, 3(6): 159-172.
  • 9ZhangJun-jie, Perdisci R, Lee W, et al.. Detecting stealthy P2P botnets using statistical traffic fingerprints[C]. Proceedings of IEEE/IFIP 41st International Conference on Dependable Systems and Networks, Hong Kong, China, 2011: 121-132.
  • 10Jerome F, Shaonan W, Walter B, et al .. BotCloud: detecting botnets using MapReduce[C]. International Workshop on Information Forensics and Security - WIFS, Foz do Iguacu, Brazil, 2011: 1-6.

共引文献9

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部