期刊文献+

GSSAC:一种用于遥感影像配准的误匹配点检测方法 被引量:5

GSSAC: false matching points detection method for remote sensing images
下载PDF
导出
摘要 遥感影像配准中,由于光照、成像角度、几何变形等因素的影响,无论采用何种配准方法,总会产生误匹配点,因此误匹配点检测也是一个非常重要的步骤。针对常用RANSAC(random sample consensus)方法不稳定、无法准确检测分布不均匀匹配点的缺点,提出了分组排序采样一致性(group sorted cample consensus,GSSAC)方法来提高误匹配点检测的稳定性和精度。分组排序采样方法首先将匹配点分为若干组,在每组内计算匹配点的误差并排序,然后在每组中分别采样若干个匹配点组成估算模型参数需要的匹配点。实验结果表明,GSSAC方法可以稳定地获得高精度的检测结果。 Given the influences of illumination, imaging angle and geometric distortion, among others, false matching points still occur in all image matching algorithms. Therefore, false matching points detection is an important step in remote sensing image registration. RANSAC was typically used to detection. However, RANSAC couldn' t accurately detect unevenly distribu- ted matching points and the result was unstable. To overcome these disadvantages and improve accuracy and stability, this paper proposed GSSAC method. Group sorted sample strategy first divided all matching points into several groups. Then,it sorted the matching points in each group. Finally, one or more matching points were sampled based on their orders for each group. These matching points were formed by the minimum number of points required to compute model parameters. The experiments show that the stability and accuracy of GSSAC are better compared with other methods.
出处 《计算机应用研究》 CSCD 北大核心 2016年第5期1562-1565,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2012AA12A304 2013AA12A301)
关键词 影像配准 误匹配点检测 随机抽样一致性算法 image registration false, matching points detection RANSAC
  • 相关文献

参考文献15

  • 1Lowe D G. Distinctive inmge features from scale-invariant keypoints [ J]. International Journal of Computer Vision,2004,60( 1) :91- 110.
  • 2Ke Yen, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors[ C ]//Proc of IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. Washington DC : IEEE Press,2004:506-513.
  • 3Bay H, Tuytelaars T, Van Gool L. SURF: speeded up robust features [ C ]//Proc of the 9th European Conterenee on Computer Vision. Betrtin : Springer, 2006:404 - 417.
  • 4Mikolajczyk K, Schmid C. A performance evaluation of local descrip- tors[ J]. IEEE Trans on Pattern Analysis and Machine Intelli- gence,2005,27(10) : 1615-1630.
  • 5Li Bing,Xiao Rong,Li Zhiwei,et el. Rank-SIFT: learning to tank re- peatable local interest points [ C ]//Proc of IEEE Conference on Com- puter Vision and Pattern Recognition. [ S. 1. ] : IEEE Press, 2011 : 1737-1744.
  • 6Fischler M A, Bolles R c. Random sample consensus : a paradigm for model fitting with applications to image analysis and atttomated cartog- raphy[J]. Communications of the Association for Computing Machinery, 1981,24 ( 6 ) : 381 - 395.
  • 7吴一全,沈毅,陶飞翔.基于NSCT和SURF的遥感图像匹配[J].遥感学报,2014,18(3):618-629. 被引量:15
  • 8Paleniehka R M ,Zaremba M B. Automatic extraction of control points for the registration of optical satellite and LiDAR images[ J ]. IEEE Trans on Geoscience and Remote Sensing ,2010,48 (7) :2864- 2879.
  • 9Cao Shixiang, Jiang Jie, Zhang Guangiun, et al. An edge-based scale and affine-invariant algorithm for remote sensing image registration [J]. International Journal of Remote Sensing, 2013,34 (7): 2301-2326.
  • 10葛盼盼,陈强,顾一禾.基于Harris角点和SURF特征的遥感图像匹配算法[J].计算机应用研究,2014,31(7):2205-2208. 被引量:32

二级参考文献29

共引文献45

同被引文献25

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部