期刊文献+

改进颜色融合的医学图像彩色化技术 被引量:3

Medical image colorization based on improved color fusion
下载PDF
导出
摘要 彩色化后的医学图像能清晰体现患者病灶信息有利于医患沟通。提出改进颜色融合的医学图像彩色化方法,首先利用基于KNN的图像前背景区分算法,强化病灶区域的边界信息;然后以此为约束条件,只需提供简单的着色输入;最后将边界能量引入颜色融合方法,得到较好的着色结果。着色图像保持了原图的灰度信息不变,增加了彩色标记图像的颜色和真实感。实验结果表明,该算法具有较高的精确度,可有效地应用于医学图像彩色化处理。 Coloring grey-level images has the advantage of highlighting the suspected regions,which helps with the communication between doctors and patients. This paper proposed a new medical image colorization approach via an improved color fusion scheme. Firstly,it used KNN-based foreground / background segmentation to strengthen the outline. Secondly,it annotated the image with only a few user specified color scribbles. Finally,it introduced a color fusion algorithm to obtain a better color appearance for the medical image. The resulting image preserved the chromatic information of the source image and retained the original luminance of the colored image. In experiments,the algorithm has a high accuracy and the results demonstrate a good potential for practical applications of the proposed algorithm in the medical image processing.
出处 《计算机应用研究》 CSCD 北大核心 2016年第5期1581-1583,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(61502331) 天津市应用基础与前沿技术研究计划资助项目(15JCQNJC00800 15JCYBJC16000) 天津市高等学校科技发展基金计划项目(20140816) 天津财经大学优秀青年学者计划项目(YQ1506)
关键词 医学图像处理 颜色融合 图像着色 图层区分 medical image processing color fusion image colorization layers distinction
  • 相关文献

参考文献12

  • 1Zhao Yuanmeng, Wang Lingxue, Jin Weiqi, et al. Colorizing biomedi- cal images based on color transfer[ C ]//Proe of IEEE/ICME interna- tional Conference on Complex Medical Engineering. 2007: 820-823.
  • 2Liu Hongbo, Wang Xiukun. hnage analysis by analogy with Taylor ex- pansion [ C ]//Proe of the 20th Spring Conference on Computer Graphics. 2004:209- 211.
  • 3Tomihisa W, Michael A. Transferring color to greyscale images [ C ]// Proc of ACM SIGGRAPH. 2002:227-280.
  • 4Levin A, Lischinski D. Colorization using optimization [ J ]. ACM Trans on Graphics ,2004,23(3 ) :689-694.
  • 5Chen Qifeng, Li Dingzeyu, Tang Chikeung. KNN matting [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence,2013,35 (9) :2175-2188.
  • 6Shu Xianbiao, Yang Jianchao, Ahuja N. Non-local compressive sam- piing recovery[ C] //Proc of IEEE Intemadonal Conference on Com- putational Photography. 2014 : 1-8.
  • 7徐枫,严锡君,黄陈蓉,郑胜男,黄凤辰,徐立中.特征驱动先验的归一化卷积超分辨率重建[J].中国图象图形学报,2014,19(10):1514-1523. 被引量:4
  • 8侯玉婷,彭进业,郝露微,王瑞.基于KNN的特征自适应加权自然图像分类研究[J].计算机应用研究,2014,31(3):957-960. 被引量:17
  • 9Zheng Shuai, Cheng Mingming, Warrell J, et al. Dense semantic image segmentation with objects and attributes [ C]//Proe of IEEE Co~ffe- renee on Computer Vision and Pattern Recognition. 2014:3214-3221.
  • 10Lee S, Park S W, Oh P, et al. Colorization based compression using optimization [ J ]. IEEE Yrans on Image Processing ,2013,22 ( 7 ) : 2627- 2636.

二级参考文献38

  • 1徐智章,俞清.超声弹性成像原理及初步应用[J].上海医学影像,2005,14(1):3-5. 被引量:167
  • 2王怡,王涌,张希敏,秦茜淼,王意达,徐智章.实时组织弹性成像技术在鉴别诊断乳腺良恶性肿块中的价值评估[J].中华超声影像学杂志,2005,14(12):911-913. 被引量:76
  • 3罗葆明,曾婕,欧冰,智慧.乳腺超声弹性成像检查压力与压放频率对诊断结果影响[J].中国医学影像技术,2007,23(8):1152-1154. 被引量:83
  • 4WANG Yu-guang, CAO Fei-long, YUAN Yu-bo. A study on effec- tiveness of extreme learning machine [ J ]. Neurocornputing, 2011,74 (16) :2483-2490.
  • 5JOS M M, PABLO E M, EMILIO S O, et al. Regularized extreme learning machine for regression problems [ J ]. Neurocomputing, 2011,74(17) :3716-3721.
  • 6HUANG Guang-bin, WANG Dian-hui, LAN Yuan. Extreme learning machines:a survey[ J]. International Journal of Machine Learning and Cybernetics ,2011,2 (2) : 107-122.
  • 7PASS G, ZABH R. Histogram refinement for content-based image re- trieval [ C ]//Proc of IEEE Workshop on Applications of Computer Vi- sion. 1996:96-102.
  • 8ZHOU Xiao-li, BHANU B. Feature fusion of face and gait for human recognition at a distance in video[ C]//Proc of the 18th International Conference on Pattern Recognition. 2006:529-532.
  • 9CHINTALAPUDI K,LYER A P,PADMANABHAN V N. Indoor loca- lization without the pain [ C ]//Proc of the 16th Annual International Conference on Mobile Computing and Networking. 2010:173-184.
  • 10Lerttrattanapanich S,Bost N K.High resolution image formation from low resolution frames using delaunay triangulation[J].IEEE Transactions on Image Processing,2002,11 (12):1427-1441.

共引文献28

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部