期刊文献+

一株耐铀及伴生重金属纤维素降解菌株的分离鉴定 被引量:2

Isolation and Identification of a Cellulose-degradation Bacterial Strain C1 with Uranium and Associated Heavy Metals Resistance
下载PDF
导出
摘要 筛选出耐受一定浓度铀及其伴生重金属胁迫的纤维素降解菌株,以期达到重金属富集植物体减容减重的目的。通过重金属浓度梯度摇瓶筛选和羧甲基纤维素(CMC-Na)水解圈等方法筛选出一株有较强重金属抗性的纤维素降解菌株C1。经过形态学,菌株培养特征,16S r DNA序列和gyr B基因序列系统发育树对分离菌株进行鉴定和分析,鉴定为革兰氏阳性地衣芽孢杆菌(Bacillus licheniformis)。菌株C1的羧甲基纤维素酶活(CMCA)在第4天最高为99.16 U/m L;滤纸酶活(FPA)在第3天达到最高为85.89 U/m L;在10天时秸秆失重率为33.10%。筛得一株耐受一定浓度铀及伴生重金属胁迫的纤维素降解菌C1,对处置富集重金属植物体具有一定的指导意义。 The study aims to screen out cellulose degradation bacteria with a certain concentration of uraniumand associated heavy metal stress, thus to achieve the capacity and weight reduction in heavy metal enrichmentplants. The celluloytic microbes bacterium C1 was screened through the heavy metal concentration gradientshaker and carboxymethyl cellulose hydrolysis circle. With the help of the phenotypical, culturalcharacteristics, phylogenetic tree based on 16 S r DNA sequence and gyr B sequence, C1 was identified as Bacillus licheniformis, with gram positive. The highest CMCase activity secreted by C1 was 99.16 U/m L on thefourth day, the highest Fpase activity was 85.89 U/m L on the third day. On the tenth day, the weight losspercentage of straw was 33.10%. Screening out the celluloytic microbes bacterium C1 with a certainconcentration of uranium and associated heavy metal stress has certain guiding significance to disposal of heavy metal enrichment plant.
出处 《中国农学通报》 2016年第12期103-109,共7页 Chinese Agricultural Science Bulletin
基金 国家核设施退役及放射性废物治理科研重点项目(2014ZG6104)
关键词 微生物学 铀及伴生重金属 超富集植物 纤维素降解菌 microbiology uranium and associated heavy metals hyperaccumulator cellulose decomposing microorganisms
  • 相关文献

参考文献24

  • 1张新华,刘永.铀矿山“三废”的污染及治理[J].矿业安全与环保,2003,30(3):30-32. 被引量:44
  • 2Jagetiya B, Sharma A. Optimization of chelators to enhance uranium uptake from tailings for phytoremediation.[J]. Chemosphere,2013,91(5):692-696.
  • 3赵鲁雪,罗学刚,唐永金,彭芳芳,王丽超.铀污染环境下植物的光合生理变化及对铀的吸收转移[J].安全与环境学报,2014,14(2):299-304. 被引量:13
  • 4Abhilash P C,Yunus M. Can we use biomass produced from phytoremediation[J]. Biomass and Bioenergy,2011,35(3):1371-1372.
  • 5Sas-nowosielska A, Kucharski R, Malkowski E, et al. Phytoextraction crop disposal: An unsolved problem[J]. Environmental Pollution,2004,128(3):373-379.
  • 6Yan X L, Chen T B, Liao X Y, et al. Arsenic transformation and volatilization during incineration of the hyperaccumulator Pteris vittata L[J]. Environmental Science & Technology,2008,42(5):1479-1484.
  • 7Lu S, Du Y,Zhong D, et al. Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators.[J]. Environmental Science & Technology,2012,46(9):5025-5031.
  • 8Barbaroux R, Plasari E, Mercier G, et al. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale[J], Science of the Total Environment,2012,423:111-119.
  • 9Cao X,Ma L, Shiralipour A, et al. Biomass reduction and arsenic transformation during composting of arsenic-rich hyperaccumulator Pteris vittata L.[J]. Environmental Science and Pollution Research,2010,17(3):586-594.
  • 10Ghosh M, Singh S P. A review on phytoremediation of heavy metals and utilization of its byproducts[J]. Applied Ecology and Environmental Research,2005,3(1):1-18.

二级参考文献103

共引文献261

同被引文献73

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部