期刊文献+

局部有界函数的Picard算子收敛阶的估计

Estimate on rate of convergence of Picard operators for locally bounded functions
下载PDF
导出
摘要 对局部有界函数f的Picard算子在区间(-∞,+∞)上的收敛阶进行估计。在蔡清波等人关于Picard算子的收敛阶研究基础上,对其所给的估计结果作进一步改进,得到更精确的系数估计。 In this article we estimate the rate of convergence of Picard operators for locally bounded function f on(-∞,+∞). Our study is based on the authors Cai and the others′ researches about the rate of convergence of Picard operators, and improves the results of estimation, gets more accurate coefficient estimation.
出处 《阜阳师范学院学报(自然科学版)》 2016年第1期18-21,共4页 Journal of Fuyang Normal University(Natural Science)
基金 福建省中青年教师教育科研项目(JA14262)资助
关键词 局部有界函数 Picard算子 收敛阶 LAPLACE分布 locally bounded functions Picard operators rate of convergence Laplace distribution
  • 相关文献

参考文献10

二级参考文献32

  • 1沈晓斌,王平华.Durrmeyer-Bézier算子的收敛阶[J].上饶师范学院学报,2005,25(6):13-15. 被引量:2
  • 2王平华.有界变差函数的Durrmeyer-Bézier算子收敛阶的估计[J].大学数学,2007,23(1):75-78. 被引量:6
  • 3[1]S.S. GUO and M. K. KHAN. On the rate of convergence of some operators on functions of bounded variation [J]J.Approx. Theory 1989,58: 90~ 101
  • 4[3]F. CHENG ,On the rate of conergence of Bernstein polynomials of functions of bounded variation[J]. J. Approx. Theory 1983,39:259~274
  • 5[4]W. FELLER. An Introduction to Probability Theory and its Applications Ⅱ[M]. Wiley:New York 1966:503~521
  • 6[5]F. HERZOG and J. D HILL. The Bernstein polynomils for discontinuous functions[J]. Amer. J. Math 1946,68:109~124
  • 7[6]X.M. ZENG. Bounds for Bernstein Functions and Meyer-Konig and Zeller Basis Functions[J]. J. Math. Anal. 1998,219:364~376
  • 8ZENG Xiao Ming. Approximation properties of Gamma operators[J].J Math Anal Appl, 2005,311:389-401.
  • 9BOJANIC R, CHENCJ F. Rate of convergence of Bernstein polynomials for functions with.derivatives of bounded variation[J]. J Math Anal Appl, 1989(141): 136-151.
  • 10Xiao-Ming Zeng. On the rate of Convergence of the Generalized Szasz type operators for functions of bounded variation[J]. J Math Anal Appl,1998,(226):309-325.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部