期刊文献+

多目标人工蜂群双聚类算法在基因表达数据中的应用研究 被引量:2

Research and Application of Multi-Objective Artificial Bee Colony Biclustering in Gene Expression Data
下载PDF
导出
摘要 基于多目标优化的双聚类算法能够同时优化均方残差和尺寸等多个相互冲突的目标,更好地挖掘出均方残差较小、尺寸较大的双聚类,提出了一个多目标人工蜂群双聚类算法.该方法首先采用组信息对蜜源进行编码,然后使用2种交叉和1种变异操作分别实现算法的局部搜索和全局搜索,最后根据非劣排序和拥挤距离对外部档案进行修剪.在2套真实的基因表达数据集上进行实验,结果表明:与其他公开算法相比,多目标人工蜂群双聚类算法具有较好的收敛性和种群多样性,同时挖掘出具有显著生物意义的双聚类. Biclustering algorithms based on multi-objective optimization,which can optimize several objectives simultaneously in conflict with each other,such as the mean squared residue and the size. In order to mine better biclusters with lower mean squared residue but larger size,a novel algorithm named Multi-objective Artificial Bee Colony Biclustering is proposed. Firstly,the approach adopts a group based representation for the genes-conditions associations to encode foods,then two different crossovers and a mutation operation are used to realize local search and global search respectively. Consequently,the non-dominated sort and crowding distance are applied to prune external archives. Experiments are performed on two real gene expression datasets,and it is found that compared with competing algorithms,the method has better global astringency and diversity of the population. Besides,it can obtain significantly biological biclusters.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2016年第2期116-123,共8页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(71272084 71102146) 广东省教育部产学研结合项目(2012B091100349) 广东医学院面上基金项目(XK1330) 广东医学院大学生创新实验重点项目(2014FZDG003)
关键词 基因表达数据 双聚类 多目标优化 人工蜂群 gene expression data biclustering multi-objective optimazition artificial bee colony
  • 相关文献

参考文献20

  • 1LUO F, KHAN L, KHAN L. Hierarchical clustering of gene expression data[ C~//Proceedings of the 3rd IEEE Conference on Bioinformatics and Bioengineering. USA: IEEE Computer Society, 2003,67 (3) :328 - 335.
  • 2SHERLOCK G. Analysis of large-scale gene expression data[ J]. Brief Bioinform, 2001, 2(4) :350 - 362.
  • 3CHENG Y, CHURCH G M. Biclustering of expression data[ C ]//Proceeding of the 8th International Conference on Intelligent Systems for Molecular Biology. New York: ACM Press, 2000:93 -103.
  • 4YANG J, WANG H, WANG W, et al. Enhanced biclus- tering on expression data [ C ] //Proceedings of the 3rd IEEE Conference on Bioinformatics and Bioengineering. Maryland : IEEE Computer Society, 2003:321 - 327.
  • 5BEN-DOR A, CHOR B, KARP R, et al. Discovering lo- cal structure in gene expression data: the order-preserving submatrix problem[ J l. Journal of Computational Biology, 2003, 10(3/4): 373-384.
  • 6ZHANG Z, TEO A, OOI B C, et al. Mining determinis- tic biclusters in gene expression data[ C]//Proceeding of the 4th IEEE Symposium on Bioinformaties and Bioengi- neering. Taiwan : IEEE Computer Society, 2004 : 283 - 290.
  • 7BLEULER S, PRELIC A, ZITZLER E. An EA frame work for bielustering of gene expression data [ C ] //Pro- ceedings of the 2004 Congress on Evolutionary Computa- tion. Switzerland: IEEE Computer Society, 2004 : 166 - 173.
  • 8BRYAN K, CUNNFNGHAM P, BOLSHAKOVA N. Bi- clustering of expression data using simulated annealing [ C]//Proceedings of the 18th IEEE Symposium on Com- puter-Based Medical Systems. Ireland: IEEE Computer Society, 2005 : 1063 - 7125.
  • 9MITRA S, BANKA H. Multi-objective evolutionary bi- clustering on gene expression data [J].Pattern Recogni- tion, 2006, 39(12) :2464 -2477.
  • 10BRIZUELA C A, LUNA-TAYLOR J E, MARTINEZ- PEREZ I, et al. Improving an Evolutionary Multi-objec- tive Algorithm for the Biclustering of Gene Expression Da- ta [ C ] //IEEE Congress on Evolutionary Computation. Mexico: IEEE Computer Society, 2013:221 - 228.

二级参考文献14

共引文献59

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部