期刊文献+

基于keg-BDI主体的决策行为建模(英文) 被引量:2

Modelling Decision-making Behavior Based on keg-BDI Agents
下载PDF
导出
摘要 文章通过把无穷值的卢卡斯维茨逻辑的真值取值范围从[0,1]扩展到[-1,1],提出了基于卢卡斯维茨逻辑和命题动态逻辑的keg-BDI逻辑(即:知识情感等级BDI逻辑),此逻辑是情感等级BDI逻辑的一种扩展逻辑。keg-BDI逻辑可以对知识状态、心智状态(比如:信念、愿望和意图)和情感状态(比如:害怕、焦虑和自信)这些能够能够影响keg-BDI主体行为决策的因素进行形式化。keg-BDI主体的决策行为是通过添加了具体条件的不同背景的不同测度来决定。文章在给出了keg-BDI模型的语言、语义之后,对此种模型的不同背景之间的相互关系进行了论述,最后对keg-BDI主体的军事决策行为进行了实例分析。本研究的目的在于为分布式人工智能和军事仿真提供形式支持。 In this paper we extend the range of truth value of infinite-valued Lukasiewicz logic from [0, 1] to [-1,1], and propose an extended emotional graded BDI logic, i.e., keg-BDI logic that is based on this extended Lukasiewicz logic and propositional dynamic logic to formalize knowledge states, mental states (such as belief, desire, intention) and emotional states (such as fear, anxiety and self-confidence) which influence on the keg-BDI agent's decision-making behavior. This behavior is determined by the different measure of each context that is added by concrete conditions. After presenting the language and semantics of keg-BDI logic and illustrating relationships between/among contexts for the keg-BDI agent, an example of military decision-making behavior is given. This study will provide a formal support for distributed artificial intelligence and military simulation.
出处 《逻辑学研究》 CSSCI 2016年第1期23-36,共14页 Studies in Logic
基金 supported by the Humanities and Social Sciences Planning Foundation of Chinese Ministry of Education(Grant No.13YJA72040001) by the National Natural Science Foundation of China under Grant No.61273338/F030603
  • 相关文献

参考文献28

  • 1C. Adam, 2007, Emotions: From Psychological Theories to Logical Formalization and Implementation in a BDI Agent, PhD thesis, lnsititut National Polytechnique de Toulouse.
  • 2C. Adam, A. Herzig and D. Longin, 2009, "A logical formalization of the OCC theory of emotions", Sythese, 168(2): 201-248.
  • 3T. Bosse and D. HShle, 2011, "Enhancing believability of virtual soccer players: App- lication of a BDI-model with emotions and trust, developing concepts in applied intel- ligence", Studies in Computational Intelligence, 363: 119-128.
  • 4M. E. Bratman, 1987, Intentions, Plans, and Practical Reason, Cambridge: Harvard University Press.
  • 5A. Casali, L. Godo and C. Sierra, 2005, "Graded BDI models for agent architecture", in J. Leite and P. Torroni (eds.), ComputationalLogic in Multi-agent Systems, pp. 126- 143, Springer.
  • 6A. Casali, L. Godo and C. Sierra, 2008, "A logical framework to represent and rea- son about graded preferences and intentions", Knowledge Representation, pp. 27-37, Menlo Park: AAAI Press.
  • 7A. Casali, L. Godo and C. Sierra, 2011, "A graded BDI agent model to represent and reason about preferences", Artificial Intelligence, 175(7-8): 1468-1478.
  • 8P. R. Cohen and H. Levesque, 1991, "Teamwork", Nons, 24(4): 487-512.
  • 9N. Criado, E. Argente and V. Botti, 2010, "Normative deliberation in graded BDI agents", in J. D. C. Witteveen (ed.), MATES 2010, LNA1, Vol. 6251, pp. 52-63.
  • 10D. Harel, D. Kozen and J. Tiuryn, 2000, Dynamic Logic, Cambridge: The MIT Press.

同被引文献2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部