期刊文献+

手机位置和朝向无关的活动识别技术研究 被引量:2

Research on Activity Recognition Technique of Smart Phone Position and Orientation Independent
下载PDF
导出
摘要 文中针对基于智能手机的活动识别中如何消除手机位置和朝向的影响问题展开研究。首先,针对手机放置位置问题,提出了先识别手机位置再进行活动识别的方法,其特点是能够基于特定的手机位置选取最佳的活动识别模型,进而消除手机位置对活动识别的影响;其次,针对手机朝向影响问题,对传感器数据使用绝对值和简单移动平均线处理的方法,消除手机朝向对手机位置识别和活动识别的影响;最后,基于Android平台开发了一个传感器数据收集工具对传感器数据进行收集,设计了两组实验对上面提出的方法进行实验验证。结果表明,文中提出的方法能够很好地消除手机放置位置和朝向对活动识别的影响,活动识别的准确率能达到87.89%。 The research aims at how to eliminate the influence of smart phone' s position and orientation variation at human activity recog- nition. Firstly, a method is put forward which recognizes the phone position and human activity followed based on the specific position. The feature is to select the best activity recognition model based on specific position for elimination of influence of mobile position on ac- tivity recognition. Secondly, in order to decrease the impact of mobile phones on the phone toward the sensor data, the absolute value and a simple moving average method is applied to process the sensor data. Finally ,to prove the theory ,a sensor data collecting tool has been developed in the Android platform, which is used to collect sensor data in different position and orientation of mobile phone, and two ex- periments have been conducted based on the theory and data collected by the tool. The results show that the presented method can effec- tively eliminate the influence of the smart phone' s position and orientation on the activity recognition,and the activity recognition accura- cy can reach 87.89%.
出处 《计算机技术与发展》 2016年第4期1-5,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(61202117)
关键词 手机位置 手机朝向 活动识别 智能手机 position of phone orientation of phone activity recognition smart phone
  • 相关文献

参考文献17

  • 1Miluzzo E, Lane N D, Fodor K, et al. Sensing meets mobile social networks: the design,implementation and evaluation of the cenceme application[ C]//Proceedings of the 6th ACM conference on embedded network sensor systems. Raleigh, NC: ACM ,2008:337-350.
  • 2Yuan B, Herbert J, Emamian Y. Smartphonebased activity recognition using hybrid classifier[ C ]//Proceeding of the 4th international conference on pervasive and embedded compuring and communication systems. [ s. l. ] :[ s. n. ] ,2014.
  • 3Gao C, Kong F, Tan J. Healthaware: tackling obesity with health aware smart phone systems[ C]//Proc of IEEE international conference on robotics and biomimetics. Guilin: IEEE, 2009 : 1549-1554.
  • 4Shoaib M, Bosch S, Incel O D, et al. A survey of online activity recognition using mobile phones [ J ]. Sensors, 2015,15 ( 1 ) : 2059-2085.
  • 5Kwapisz J R, Weiss G M, Moore S A. Activity recognition using cell phone accelerometers [ J ]. ACM SIGKDD Explorations Newsletter, 2011,12 ( 2 ) :74 - 82.
  • 6Siirtola P, Roning J. Ready-to-use activity recognition for smartphones[ C]//Proceedings of the 2013 IEEE symposium on computational intelligence and data mining. Singapore: IEEE, 2013:59-64.
  • 7Siirtola P, Rsning J. Recognizing human activities user-independently on smartphones based on accelerometer data [ J ]. International Journal of Interactive Multimedia and Artificial Intelligence ,2012,1 ( 5 ) :38-45.
  • 8Lu H ,Yang J, Liu Z, et al. The jigsaw continuous sensing engine for mobile phone applications [ C ]//Proceedings of the 8th ACM conference on embedded networked sensor systems. Zurich, Switzerland : ACM ,2010:71-84.
  • 9Reddy S, Mun M, Burke J, et al. Using mobile phones to determine transportation modes [ J ]. ACM Transactions on Sensor Networks,2010,6(2) :13-16.
  • 10Anjum A, Ilyas M U. Activity recognition using smartphone sensors[ C].//Proc of consumer communications and networking conference. [ s. l. ] :IEEE ,2013:914-919.

同被引文献24

  • 1Alsheikh M A, Selim A, Niyato D, et al. Deep activity recognition models with triaxial accelerometers. Computer Science, 2015, arxiv: 1511.04664.
  • 2Roggen D, Cuspinera L P, Pombo G, et al. Limited- memory warping LCSS for real-time low-power pattern rec- ognition in wireless nodes. In: Proceedings of the 12th European Conference Wireless Sensor Networks (EWSN), Porto, Portugal, 2015. 151-167.
  • 3Ordonez F J, Englebienne G, De Toledo P, et al. In- home activity recognition: Bayesian inference for hidden Markov models. IEEE Pervasive Computing, 2014, 13 (3) :67-75.
  • 4Cao H, Nguyen M N, Phua C, et al. An integrated framework for human activity classification. Ubicomp,2012:331-340.
  • 5Bulling A, Blauke U, Schiele B. A tutorial on human ac- tivity recognition using body-worn inertial sensors. Acre Computing Surveys, 2014, 46 ( 3 ) :57-76.
  • 6P18tz T, Hammerla N Y, Olivier P. Feature learning for activity recognition in ubiquitous computing. In: Proceed- ings of the International Joint Conference on Artificial In- telligence, Barcelona, Spain, 2011. 1729-1734.
  • 7Yang J B, Nguyen M N, San P P, et al. Deep convolu- tional neural networks on multichannel time series for hu- man activity recognition. In: Proceedings of the 24th In- ternational Joint Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015. 3995-4001.
  • 8Marmanis D, Datcu M, Esch T, et al. Deep learning earth observation classification using imageNet pretrained networks. IEEE Geoscience & Remote Sensing Letters, 2016, 13(1) :105-109.
  • 9Simonyan K, Zisserman A. Very deep convolutional net- works for large-scale image recognition, arxiv preprint, arxiv: 1409. 1556, 2014.
  • 10Donahue J, Jia Y, Vinyals O, et al. DeCAF: A deep convolutional activation feature for generic visual recogni- tion. Computer Science, 2013, 50(1): 815-830.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部