期刊文献+

基于DCT域的车标定位方法研究 被引量:1

Research on Vehicle Logo Localization Method Based on DCT Domain
下载PDF
导出
摘要 为了能够对高速公路视频中的违法车辆特征进行提取,需要完成车辆对象的目标检测和特征区域定位工作。在特征区域定位研究中,车标定位是很重要的工作,文中研究了一种直接在车脸图像DCT域中进行车标定位的方法。该方法首先使用Adaboost算法对高速公路视频中的车辆对象进行车脸区域的定位,得到感兴趣的车脸区域图像,然后利用车脸图像中车标纹理和散热器隔栏纹理所具有的不同方向性特点,直接在DCT域中提取车标的横向、竖向、斜向纹理的方向信息,通过区别于散热器隔栏只有横、竖向纹理的特性,采用阈值方法把车标区域从车脸图像背景中分割出来,从而定位到车标区域。实验采用大量不同车标的车辆图片进行处理,结果表明,该算法处理速度较快,且可以有效实现车脸区域的车标定位。 In order to extract illegal vehicles' feature in highway video,the target detection of vehicle objects and the localization of characteristics areas need to be completed. In the work of characteristics areas localization,vehicle logo localization is a very important work.A newapproach is proposed for vehicle logo localization directly in DCT domain of face image. Firstly adaptive boosting( Adaboost) algorithm is used to locate the vehicle face region of vehicle objects and the vehicle face images could be gained. Secondly the vehicle logo 's horizontal,vertical,and diagonal texture information in the DCT domain are extracted by the different directional characteristics between vehicle logo 's and radiator grille's texture in vehicle face images,then threshold method is used to divide the vehicle logo region out of the background image which could rule out the radiator grille's horizontal,vertical texture information. A large number of vehicle images with different logos are used for experiments,and the results showthat the processing speed is faster,and the algorithm can effectively achieve the vehicle logo localization of vehicle face region.
出处 《计算机技术与发展》 2016年第4期70-73,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61363043)
关键词 车脸 DCT域 车标定位 纹理 ADABOOST vehicle face DCT domain vehicle logo localization textural features Adaboost
  • 相关文献

参考文献12

  • 1Wang Y, Liu Z, Xiao F. A fast coarse-to-fine vehicle logo detection and recognition method [ C ]//Proc of IEEE international conference on robotics and biomimetics. [ s. l. ] : IEEE, 2007:691-696.
  • 2Liu Yang, Li Shutao. A vehicle logo location approach based on edge detection and projection[ C ]//Proc of IEEE interna- tional conference on vehicular electronics and safety. [ s. l. ] : IEEE,2011:165-168.
  • 3李红林,王运琼.基于差分与对称性检测相结合的车标定位方法[J].曲靖师范学院学报,2008,27(6):68-71. 被引量:6
  • 4李贵俊,刘正熙,游志胜,等.一种基于熵增强和自适应形态学滤波的快速车标定位方法[C]//第三届信号与信息处理全国联合学术会议论文集.出版地不详:出版者不详,删.
  • 5肖飞,王运琼,刘丽梅,赵杨.基于局部对称性特征的快速车标定位[J].计算机科学,2010,37(2):298-300. 被引量:7
  • 6马蓓,张乐.基于纹理特征的汽车车型识别[J].电子科技,2010,23(2):94-97. 被引量:12
  • 7Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55 ( 1 ) : 119-139.
  • 8Schapire R E, Singer Y. Improved boosting algorithms using confidence-rated predictions[ J ]. Machine Learning, 1999,37 (3) :297-336.
  • 9李全武,李玉惠,李勃,陈伊.车脸定位及识别方法研究[J].计算机科学与探索,2015,9(6):726-733. 被引量:9
  • 10Chiptrasert B, Rao K R. Discrete cosine transform filtering [ J ]. Signal Processing, 1990,19 (3) :233-245.

二级参考文献33

共引文献44

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部