期刊文献+

基于MapReduce的混合推荐算法及应用 被引量:1

Hybrid Recommendation Algorithm Based on MapReduce and Its Application
下载PDF
导出
摘要 针对基于项目与基于用户两种传统协同过滤算法的不足,文中结合基于用户以及基于项目的两种传统协同过滤算法,并加以合理改进,提出了一种新型的混合型并行推荐算法。通过对新算法MapReduce编译,使新算法能够在Hadoop云平台下顺利运行。在可以利用以基于用户的方法为基础划定出定量的邻居范围,保证了推荐的个性化,同时,利用基于项目的协同过滤算法进行推荐,最终根据综合因素调整评分预测方法得出符合实际的推荐结果。实验结果表明,在数据量相对较大时新算法不仅在处理速度上表现更加优越,而且明显提高了推荐精确度。同时文中将该算法应用在西安本土旅游推荐服务上,针对西安市几大景点进行推荐,使新算法的准确性在实际应用中得到验证。 For the shortcomings of traditional project- based and user- based collaborative filtering algorithm,a newparallel recommendation algorithm is proposed,combined user- based with project- based collaborative filtering algorithm and improved them. Through MapReduce compilation,the newalgorithm can run in Hadoop cloud platform. To guarantee the personalized recommendation,it can take advantages of the collaborative filtering algorithm based on user defined a certain number of neighbors. At the same time,the project-based collaborative filtering algorithm is used to recommend. Finally,according to the comprehensive adjusted score prediction method,the recommended results are obtained. The experimental results showthat the algorithm becomes more superior in the case of a large number of processing speed,and improves the accuracy of recommendation. Simultaneously,the algorithm is applied in local tourism of Xi'an referral service for several major attractions to recommend. The accuracy of the newalgorithm has been verified in practical applications.
出处 《计算机技术与发展》 2016年第4期74-77,81,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(41271387) 西安市科技计划基金资助项目(SF1228-3)
关键词 MAPREDUCE HADOOP 混合推荐算法 云计算 M apReduce Hadoop hybrid recommendation algorithm cloud computing
  • 相关文献

参考文献12

二级参考文献65

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2胡迎松,韩苹,陈中新.一个基于Agent的个性化推荐系统[J].计算机应用研究,2006,23(4):78-80. 被引量:19
  • 3陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 4Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 5Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 6Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 7Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 8Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 9Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 10Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.

共引文献502

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部