期刊文献+

凸锥的一个广义内部性质 被引量:2

A Characterization of Convex Cone Via Generalized Interior
原文传递
导出
摘要 在集合的拟内部和相对代数内部非空的条件下给出了凸锥的一个广义内部性质,证明了凸锥的拟内部和相对代数内部的一致性,进而建立了基于凸锥的拟内部和相对代数内部的非凸分离定理.此外,也给出了一些具体例子对主要结果进行了解释. A generalized interior characterization of convex cone is given based on the nonemptiness of the quasi interior and relative algebraic interior for sets, consistency of the quasi interior and relative algebraic interior is proved for a convex cone, and further non- convex separation theorems are established via quasi interior and relative algebraic interior for a convex cone. Moreover, some concrete examples are also presented to illustrate the main results.
出处 《应用数学学报》 CSCD 北大核心 2016年第2期289-297,共9页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金重点项目(11431004) 国家自然科学基金项目(11301574 11271391) 重庆市基础与前沿研究计划项目(cstc2015jcyjA00027) 重庆市教委科学技术研究项目(KJ1500303) 第二批重庆市高等学校青年骨干教师资助计划项目 重庆市研究生科研创新项目(CYS15154)资助
关键词 凸锥 拟内部 相对代数内部 非凸分离定理 向量优化 convex cone quasi interior relative algebraic interior nonconvex separation theorems vector optimization
  • 相关文献

参考文献18

  • 1Chen G Y, Huang X X, Yang X Q. Vector Optimization: Set-valued and Variational Analysis. Berlin: Springer-Verlag, 2005.
  • 2Yang X M, Yang X Q, Chen G Y. Theorems of the alternative and optimization with set-valued maps. Journal of Optimization Theory and Applications, 2000, 107(3): 627-640.
  • 3Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-valued functions. Journal o/ Optimization Theory and Applications, 2001, 110(2): 413-427.
  • 4Rong W D, Wu Y N. Characterizations of super efficiency in cone-convexlike vector optimization with set-valued maps. Mathematical Methods of Operations Research, 1998, 48(2): 247-258.
  • 5高英.多目标优化ε-拟弱有效解的最优性条件[J].应用数学学报,2010,33(6):1061-1071. 被引量:4
  • 6Rockafellar R T. Convex Analysis. New Jersey: Princeton University Press, 1970.
  • 7Limber M A, Goodrich R K. Quasi interiors, lagrange multipliers, and Lp spectral estimation with lattice bounds. Journal of Optimization Theory and Applications, 1993, 78(1): 143-161.
  • 8Borwein J M, Lewis A S. Partially finite convex programming, Part I quasi relative interiors and duality theory. Mathematical Programming, 1992, 57(1-3): 15-48.
  • 9Borwein J, Goebel R. Notions of relative interior in Banach spaces. Journal of Mathematical Sciences, 2003, 115(4): 2542-2553.
  • 10Bo R I, Csetnek E R. Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization, 2012, 61(1): 35-65.

二级参考文献2

共引文献3

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部