摘要
为了较准确地预测光伏发电系统的发电功率,建立了动态神经网络预测模型。该模型采用有外部输入的非线性自回归神经网络(NARX)结构,考虑太阳能辐射量和电池板温度对光伏发电功率的影响,利用NARX神经网络强大的非线性映射和泛化能力,进行了发电功率的预测。结果表明,利用NARX神经网络预测光伏发电功率是可行的,并且与传统BP神经网络相比,具有良好的适应性和预测精度。
To forecast the generated power of photovoltaic (PV) system accurately, the model of generated power forecasting of PV system based on dynamic neural network was built. Nonlinear auto-regressive with external/ exogenous inputs (NARX) neural network topology was adopted. Solar irradiation quantity and temperature of PV modules were considered to forecast generated power by using the powerful ability of nonlinear mapping and generalization of NARX. The results show that NARX neural network is appropriate to the prediction of PV system generated power and this method has better adaptability and prediction accuracy than traditional BP network.
出处
《电气传动》
北大核心
2016年第4期42-45,共4页
Electric Drive
基金
广东省科技计划(2013B010405009)
珠海市战略性新兴产业重大专项(2014D0601990002)
广东省产学研合作项目(2014B090903009)
关键词
光伏系统
有外部输入的非线性自回归
神经网络
发电功率预测
photovohaic system
nonlinear auto-regressive with external/exogenous inputs
neural network
generated power forecasting