期刊文献+

随机激励的非线性Markov跳变系统的稳态响应 被引量:1

STATIONARY RESPONSE OF STOCHASTICALLY EXCITED NONLINEAR MARKOVIAN JUMP SYSTEM
下载PDF
导出
摘要 大量实际工程问题需要用同时包含连续和离散变量的Markov跳变系统来描述.本文介绍了一类随机激励的单自由度(强)非线性Markov跳变系统的稳态响应的研究方法.首先,基于随机平均法导出具有Markov跳变参数的平均It随机微分方程,原系统方程的维数得到降低.接着,根据跳变过程原理,建立Fokker-Planck-Kolmogorov(FPK)方程组,方程组中的方程与系统的结构状态一一对应且互相耦合.求解该FPK方程组,得到Markov跳变系统的稳态随机响应及其统计量.最后,以一个高斯白噪声激励的Markov跳变Duffing振子为例,计算得到不同跳变规律下系统的稳态响应.研究结果表明,Markov跳变系统的稳态响应可以看作是各结构状态子系统稳态响应的加权和,加权值由跳变规律决定. Many practical problems should be described by nonlinear Markov jump systems involving both continuous and discrete variables. In this paper,the stationary response of stochastically excited single-degree-of-freedom( strongly) nonlinear system with Markovian jump parameters is studied. Firstly,the averaged It? differential equation with Markovian jump is derived based on the stochastic averaging method. Then,according to the Markovian jump principle,the finite set of( Fokker-Planck-Kolmogorov) FPK equations are formulated. The FPK equations coupled with each other through the absorptive terms and reductive terms. The stationary response and its statistics of the Markovian jump system can be obtained by solving the FPK equations numerically. Finally,as an example,the responses of a Markovian jump Duffing oscillator subjected to Gaussian white noise are studied.Numerical results show that the stationary response of the jump system can be regard as a weighted sum of the responses of no-jump system,and the weighted value is determined by the jump rules.
出处 《动力学与控制学报》 2016年第2期165-169,共5页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11372271 11432012 51175474) "973"计划(2011CB711105)~~
关键词 MARKOV跳变 随机激励 非线性 随机平均法 Markov jump stochastic excitations nonlinearity stochastic averaging method
  • 相关文献

参考文献11

  • 1Krasosvkii N N, Lidskii E A. Analytical design of control- lers in systems with random attributes. Automation and Re- mote Control, 1961,22 ( 1 ) : 1021 - 1025.
  • 2Kats L, Krasovskii N. On the stability of systems with ran- dom parameters. Journal of Applied Mathematics and Me- chanics, 1960,27 ( 5 ) : 809 - 823.
  • 3Mariton M. Almost sure and moment stability of jump linear systems. Systems & Control Letters, 1988,11 (5) : 393 - 397.
  • 4Feng X, Loparo KA, Ji Y. et al. Stochastic stability prop- erties of jump linear systems. 1EEE Trans Automate Con- trol, 1992,37 ( 1 ) :38 - 45.
  • 5Fang Y G. A new general sufficient condition for almost sure stability of jump linear systems. IEEE Transaction Au- tomate Control, 1997, 42 ( 3 ) : 378 - 382.
  • 6Sworder D. Feedback control of a class of linear systems with jump parameters. IEEE Trans on Automatic Control, 1969,14(1) :9 - 14.
  • 7Ghosh M K, Arapostathis A, Marcus S I. Ergodic control of switching diffusions. SIAM Journal on Control and Opti- mization, 1997,35 ( 6 ) : 152 - 198.
  • 8Xu Z, Chung Y K. Averaging method using generalized harmonic functions for strongly nonlinear oscillators. Jour- nal of Sound and Vibration, 1994,174 (4) : 563 - 576.
  • 9Huang Z L, Zhu W Q, Suzuki Y. Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white noise excitations. Journal of Sound and Vibration, 2000,238 ( 2 ) : 233 - 256.
  • 10Huang Z L, Zhu W Q. Stochastic averaging of quasi-inte- grable hamihonian systems under combined harmonic and white noise excitations. International Journal of Non-Linear Mechanics, 2004,39(9) :1421 - 1434.

二级参考文献7

  • 1Nwankpa C O, Shahidehpour S M. A probabilistic approach to bulk power transmission systems analysis. Power Symposium, 1989. Proceedings of the Twenty-First Annual North American, 1989, (9-10) : 88 - 94.
  • 2Byung H L, Kwang Y L. A study on voltage collapse mechanism in electric power systems. IEEE Transactions on power system, 1991, 6(3) :914-921.
  • 3Qiu J, Shahidehpour S M, Schuss Z. Effect of small random perturbations on power systems dynamics and its reliability evaluation . IEEE Transactions on power systems, 1989, 4 (1) :197-204.
  • 4Nwankpa C O, Shahidehpour S M, Schuss Z. A stochastic approach to small disturbance stability analysis. IEEE. Transactions on power systems, 1992, 17(4) :1519 - 1528.
  • 5Zhu W Q, Yang. Stochastic averaging of quasi-non-interagable Hamiltonian system. ASME Journal of Applied Mechanics, 1997,64 : 157 - 164.
  • 6Zhu W Q, Ying Z G. Optimal nonlinear feedback control of quasi-Hamiltonian system. Science in China, Series A, 1999,42 : 1213 - 1219.
  • 7孙元章,彭疆南.基于Hamiltonian理论的受控电力系统暂态稳定分析方法[J].电网技术,2002,26(9):1-6. 被引量:17

共引文献5

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部