期刊文献+

钢轨表面图像冗余信息的模糊匹配算法 被引量:4

Algorithm of Fuzzy Matching for Redundancies of Rail Surface Images
下载PDF
导出
摘要 为了解决高速铁路轨道表面缺陷机器视觉检测系统中采集图像的冗余问题,本文提出一种钢轨表面图像冗余信息的模糊匹配算法.该种算法首先采用竖直投影法提取钢轨表面区域;之后对钢轨表面区域进行预处理并二值化,得到缺陷的位置信息;然后通过感知哈希算法,得到钢轨表面缺陷的形态信息;最后计算缺陷的位置误差和形态相似度,基于模糊匹配算法,得到匹配结果.通过实验验证,该算法能有效识别系统图像中的冗余部分,准确率达到97.5%. In order to address the redundancy of image in the detection process of rail surface defects,an algorithm of matching for the redundancies of rail surface images was proposed.At the beginning,the rail surface area was extracted by using the vertical projection method.And then,the location information of defects was obtained through the image preprocess and binarization on the rail surface.Next,the morphological information of the rail surface defects was achieved in the horizontal projection method.At last,the defect location information and morphological information were matched on the basis of the improved fuzzy matching algorithm.The experiment results verify that this algorithm can effectively identify the redundancy information of image,and the accuracy rate is as high as 97.5%.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期75-80,共6页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金重点资助项目(60835004) 国家高技术研究发展计划('863'计划)资助项目(2007AA04I244)~~
关键词 机器视觉 钢轨 表面缺陷 模糊匹配 machine vision rail surface defects fuzzy matching
  • 相关文献

参考文献12

  • 1周清跃,周镇国.客运专线钢轨技术条件的研究及起草[C]//铁路客运专线建设技术交流会论文集.2005:91-95.
  • 2PAPAELIAS M, LUGG M C, ROBERTS C, et al. High- peed inspection of rails using ACFM techniques[J]. NDTb-E International, 2009,42 (4) : 328 -- 335.
  • 3唐湘娜,王耀南.铁轨表面缺陷的视觉检测与识别算法[J].计算机工程,2013,39(3):25-30. 被引量:38
  • 4PAPAELIAS M, ROBERTS C, DAVIS C. A review on non- destructive evaluation of rails: state-of-the-art and future de- velopment[J]. Rail and Rapid Transit, 2008, 222 (4) : 367 -- 384.
  • 5BREYSSE D. Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods[J]. Construction and Building Materials, 2012,33:139 --163.
  • 6贺振东,王耀南,毛建旭,印峰.基于反向P-M扩散的钢轨表面缺陷视觉检测[J].自动化学报,2014,40(8):1667-1679. 被引量:30
  • 7肖昌炎,贾康成,王耀南.线扫描铁轨表面缺陷成像与检测[J].湖南大学学报(自然科学版),2013,40(11):64-69. 被引量:3
  • 8LI Qing-yong, REN Sheng-wei. A real-time visual inspection system for discrete surface defects of rail heads [J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61 (8)..2189--2199.
  • 9TANG Z J, ZHANG X Q, DAI Y M. Perceptual image has- hing using local entropies and DWT[J]. Imaging Science Jour- nal, 2013,16(2):241--251.
  • 10HIROTA K, PEDRYCZ W. Matching fuzzy quantities[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2002, 21(6): 1580--1586.

二级参考文献58

  • 1程建刚,田捷,何余良,杨鑫.基于非线性扩散滤波的指纹增强算法[J].自动化学报,2004,30(6):854-862. 被引量:17
  • 2刘蕴辉,刘铁,王权良,罗四维.基于图像处理的铁轨表面缺陷检测算法[J].计算机工程,2007,33(11):236-238. 被引量:24
  • 3Aigrain H. Zhang and Petkovic D 1996 Multimedia Tools andApplications 3 179.
  • 4Liang Y M, Zhai H C and Pierre C 2002 Optics Communications 212247.
  • 5Pratt W K 1991 Digital Image Processing (New York: Wiley Press).
  • 6Wang Y et al 2004 Science in China, E 47 159.
  • 7Bezdek J C 1981 Pattern Recognition with Fuzzy Objective Function Algorithms (New York: Plenum Press) p39.
  • 8周清跃,周镇国.客运专线钢轨技术条件的研究及起草[C]//铁路客运专线建设技术交流会论文集.2005:91-95.
  • 9Papaelias M, Lugg M C, Roberts C, et al. High-speed Inspection of Rails Using ACFM Techniques[J]. NDT&E International, 2009, 42(4): 328-335.
  • 10Babenko P. Visual Inspection of Railroad Tracks[D]. Orlando, USA: University of Central Florida, 2006.

共引文献71

同被引文献32

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部