期刊文献+

热等静压TiC/H13钢基复合材料的力学性能与合理初始粒径比 被引量:1

Mechanical properties and reasonable initial particle-radius-ratio of TiC/H13-steel composite prepared by hot isostatic pressing
下载PDF
导出
摘要 以H13钢粉和TiC粉末为原料,采用热等静压法制备H13钢和TiC/H13钢基复合材料,重点考察TiC粉末与H13钢粉末的初始粒径比(r/R)对复合材料的致密度、宏观硬度、微观组织及拉伸性能的影响。结果表明:直接用市售的H13钢粉和TiC粉制备的TiC/H13钢基复合材料,其致密度和抗拉强度均比H13钢的低,分别为88.2%和544.5 MPa,硬度HRC为62.5,比H13钢的略高。通过构建简单几何关系模型及分析,推导出增强相TiC颗粒与H13钢粉的初始粒径比r/R的合理判据, TiC/H13-steel matrix composite was prepared by hot isostatic pressing(HIP) H13 and TiC powders, and the effect of the initial particle-radius-ratio(r/R) of H13 and TiC powders on the density, hardness, microstructure, and tensile strength of the composite was investigated. The results show that an unreasonable partial-radius-ratio can lead to a serious reduction in the density and the tensile strength(only 88.2% and 544.5 MPa respectively), with negligible impact on the hardness HRC(62.5). A simple geometry-based analytical model was proposed to deduce the reasonable criterion for initial particle-radius-ratio(0.1〈r/R〈0.15), and the corresponding density range is 0.925-0.943. By refining the H13 powder to meet the reasonable particle-radius-ratio criterion, the density, tensile strength, and hardness of the composite(prepared under the same HIP parameters) increase to 95.3%, 832.3 MPa, and 65 HRC, respectively, with a homogeneous distribution of TiC particles in matrix. The proposed criterion for initial particle-radius-ratio can be useful for guiding and assessing the HIP processing design.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2016年第2期243-248,共6页 Materials Science and Engineering of Powder Metallurgy
基金 深圳市科技计划资助项目(JCYJ20140509142357196) 国家自然科学基金面上项目(51471189)
关键词 钢基复合材料 H13钢 TIC 热等静压 初始粒径比 steel matrix composites H13 steel TiC hot isostatic pressing initial particle radius ratio
  • 相关文献

参考文献19

  • 1LI Guobin, LI Xiangzhi, WU Jianjun. Study of the thermal fatigue crack initial life of H13 and H21 steels[J]. Journal of Materials Processing Technology, 1998, 74(1): 23-26.
  • 2TAKTAK S. Some mechanical properties of borided AISI H13 and 304 steels[J]. Materials & Design, 2007, 28(6): 1836-1843.
  • 3JIANG Wenping, MOLIAN P. Nanocrystalline TiC powder alloying and glazing of ill3 steel using a CO2 laser for improved life of die-casting dies[J]. Surface and Coatings Technology, 2001, 135(2): 139-149.
  • 4MA Shengli, XU Kewei, JIE Wanqi. Plasma nitrided and TiCN coated AISI H 13 steel by pulsed DC PECVD and its application for hot-working dies[J]. Surface and Coatings Technology, 2005, 191(2): 201-205.
  • 5王欣.粉末冶金冷作模具的应用和展望[J].稀有金属与硬质合金,1994(12):36-37.
  • 6WANG Xin. Application and prospect for Powder metallurgy cold die[J]. Rare Metals and Carbide Alloy, 1994(12): 36-37.
  • 7RAZAVI M, YAGHMAEE M S, RAHIMIPOUR M R, et al. The effect of production method on properties of Fe-TiC composite[J]. International Journal of Mineral Processing, 2010, 94(3): 97-100.
  • 8N1 Zifei~, SUN Yangshan, XUE Feng, et al Evaluation ofelectroslag remelting in TiC particle reinforced 304 stainless steel[J]. Mater Sci Eng A, 2011,528: 5664-5669.
  • 9REN Y L, QI L, FU L M, et al. Microstructural characteristics of TiC and (TiW) C iron matrix composites[J]. Journal of Materials Science, 2002, 37(23): 5129-5133.
  • 10XI Wenjun, WANG Haijing, LI Jing, et al. TiC-reinforced Fe-based nanocomposite prepared by the rapid-solidification thermite process[J]. Materials Science and Engineering A, 2012, 541: 166-171.

二级参考文献22

  • 1詹志洪.热等静压技术和设备的应用与发展[J].中国钨业,2005,20(1):44-47. 被引量:35
  • 2向长淑.瑞典人赢得日本最大热等静压机合同[J].稀有金属快报,2007,26(7):46-46. 被引量:1
  • 3北京钢铁研究总院.热等静压(HIP)技术[EB/OL].(2004-03-15).http://dbpub.cnki.net/Grid2008/Unis/detml.aspx?filename=SNAD000000192684&dbname=SNAD.
  • 4BELL T, Ll C X. Stainless steel low temperature nitriding and carburizing[J]. Advanced Materials and Processes, 2002, 160(6): 49-51.
  • 5NI Z, SUN Y, XUE F, et al. Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate[J]. Materials and Design, 2011(32): 1462-1467.
  • 6CHEN X H, LU J, LU L, et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J]. Scripta Materialia, 2005, 52(10): 1039-1044.
  • 7TASSIN C, LAROUDIE F, PONS M. Improvement of the wear resistance of 316L stainless steel by laser surface alloying[J]. Surface and Coatings Technology, 1996.80: 207-210.
  • 8VARDAVOULIAS M, JEANDIN M, VELASCO F, et al. Dry sliding wear mechanism for PM austenitic stainless steels and their composites containing Ah03 and Y203 particles[J]. Tribology International, 1996,29(6): 499-506.
  • 9LEE J, EUH K, OH J C, et al. Microstructure and hardness improvement of TiC stainless steel surface composites fabricated by high-energy electron beam irradiation[J]. Materials Science and Engineering A, 2002, 323: 251-259.
  • 10AKHTAR F, GUO S J. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites[J]. Materials Characterization, 2008, 59(1): 84-90.

共引文献29

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部