期刊文献+

底材和退火对纳米/微米晶复合304不锈钢组织和力学性能的影响

Effects of substrates and annealing on the structure and mechanical properties of nano/micro-crystalline composite 304 stainless steel
下载PDF
导出
摘要 通过铝热反应熔化法在铜底材和玻璃底材上制备块体纳米晶/微米晶复合的304不锈钢,研究了不同底材和退火工艺对钢的组织和力学性能的影响。研究发现2种底材上制备的不锈钢均包含纳米晶和微米晶,铜底材和玻璃底材上制备的材料的晶粒尺寸分别为28.8nm和30.0 nm,退火后变为21.4 nm和22.7nm。铜底材上制备的304不锈钢抗拉强度,屈服强度和伸长率分别为521 MPa,279 MPa和8.1%,退火后分别为1 001 MPa,475 MPa和9.3%。玻璃底材上制备的304不锈钢抗拉强度、屈服强度和伸长率分别为358 MPa,221 MPa和7.5%,退火后分别为1 023 MPa,461 MPa和8.6%。表明等温退火能够提高纳米晶/微米晶复合304不锈钢的性能。 Bulk nano/micro-crystalline composite 304 stainless steels were prepared by an aluminothermic reaction casting method.The effects of different substrates and annealing process on the mechanical properties of steels were investigated.It is found that the steels on two kinds of substrates consist of a nano/micro-crystalline dual-phase.The average grain sizes on copper and glass substrates are 28.8 and 30.0 nm,and become 21.4 and 22.7 nm,after the isothermal annealing.The tensile strength,yield strength and tensile ductility are 521 MPa,279 MPa and 8.1%,and become 1 001 MPa,475 MPa and 9.3%,after the isothermal annealing for the steel prepared on the copper substrate.For the steel prepared on the glass substrate,the above values are 358 MPa,221 MPa and 7.5%,and change to 1 023 MPa,461 MPa and 8.6%,after the isothermal annealing.It is demonstrated that the isothermal annealing treatment can improve the mechanical properties of steels.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2016年第2期249-256,共8页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(51164022)
关键词 纳米晶/微米晶复合 铝热反应 底材 力学性能 等温退火 304不锈钢 nano/micro-crystalline composite aluminothermic reaction casting substrate mechanical properties isothermal annealing 304 stainless steel
  • 相关文献

参考文献17

  • 1ESKANDARI M, NAJAFIZADEH A, KERMANPUR A, et al. Potential application of nanocrystalline 301 austenitic stainless steel in lightweight vehicle structures[J]. Materials and Design, 2009, 9(30): 3869-3872.
  • 2BREGLIOZZI G, SCHINOB A D, AHMEDA S I, et al. Cavitation wear behaviour of austenitic stainless steels with different grain sizes [J]. Wear, 2005, 258(1/4): 503-510.
  • 3WEERTMAN J R. Nanostructured materials: Processing properities and applications[M]. Norwich: William Andrews Publishing, 2002: 397.
  • 4KOCH C C. Ductility in nanostrucctured and ultra fine-grained materials: Recent evidence for optimism[J]. Journal of Metastable and Nanocrystalline Materials, 2003, 18: 9-20.
  • 5CONRAD H, NARAYAN J. Mechanisms for grain size harding and softening in Zn[J]. Acta Materialia, 2002, 50(20): 5067-5068.
  • 6MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science, 2006, 51(4): 427-556.
  • 7师婷.铝热法制备的大尺寸纳米晶/微米晶复相钢铁组织表征及其形成演化机理[D].兰州:兰州理工大学,2012:14-30.
  • 8SHI Ting. Microstructural formation and evolution mechanisms of nanocrystalline/microcrystalline dual-phase steels and iron preparation by aluminothermic reaction[D]. Lanzhou: Lanzhou University of Technology, 2013:14 30.
  • 9BOUAZIA O, ALLAIN S, SCOTT C. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Current Opinion in Solid State and Materials Science, 2011, 15(4): 141-168.
  • 10ZHANG Zhe, VAJPAI S K, ORLOV D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics[J]. Materials Science and Engineering A, 2014, 598:106-113.

二级参考文献16

  • 1WANG Y P, LID Y, L Parent, et al. Improving the wear resistance of white cast iron using a new concept-High-entropy microstructure [J]. Wear, 2011,271: 1623-1628.
  • 2HEDARI D, SKANDANI A A, HAIK M A. Effect of carbon content on carbide morphology and mechanical properties of A.R. white cast iron with 10%-12% tungsten [J]. Materials Science and Engineering A, 2012, 542:113-126.
  • 3PINHO K F, BOHER C, SCANDIAN C. Effect of molybdenum and chromium contents on sliding wear of high-chromium white cast iron at high temperature [J]. Lubrication Science, 2013, 25: 153-162.
  • 4YAMANAK K, MORI M, CHIBA A. Origin of significant grain refinement in Co-Cr-Mo alloys without severe plastic deformation [J]. Metallurgical and Materials Transactions A, 2012, 43: 4875-4887.
  • 5BIRADAR N S, RAMAN R. Grain refinement in Al-Mg-Si alloy TIG welds using transverse mechanical arc oscillation [J]. Journal of Materials Engineering and Performance, 2012(21): 2495-2502.
  • 6SGAO Z W, LE Q C, ZHANG Z Q, et al. Effect of ultrasonic power on grain refinement and purification processing of AZ80 alloy by ultrasonic treatment [J]. Metals and Materials International, 2012, 18(2): 209-215.
  • 7张伯明.铸造手册[M].北京:中国机械出版社.2010.491-503.
  • 8LAP Q, WEI F A, HU S L, et al. White cast iron with a nano-eutectic microstructure and high tensile strength and considerable ductility prepared by an aluminothermic reaction casting [J]. Materials Science and Engineering A, 2012, 561: 317-320.
  • 9李翠玲.铝热法制备纳米结构钢铁材料的组织及其形成机理[D].兰州:兰州理工大学,2012:54-67.
  • 10艾莹珺,艾云龙,丁家圆,黄柳青.热处理对高铬白口铸铁组织与性能的影响[J].热加工工艺,2010,39(16):133-135. 被引量:4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部