摘要
Species richness is an important indicator of species diversity. Different sampling intensities will very likely produce different species richness values. Substantial efforts have already been made to explicitly quantify the spatial variability of soil properties in different ecosystems. However, concerns still remain on how to characterize the effect of different sampling intensities on plant species richness within a given region. This study characterized the spatial variability of plant species richness and the species distribution pattern in a 25-hm2 sand dune plot in northeastern Inner Mongolia, China by using an intense sampling method(n=10,000). We also evaluated the overall effect of information loss associated with the spatial variability and distribution patterns of species richness under various scenarios of sampling intensities(n=10,000 to 289). Our results showed that semi-variograms of species richness were best described by the spherical and exponential models. As indicated by the nugget/sill ratio, species richness was different in terms of the strength of the spatial relationship. The different spatial metrics of species richness with increasing sampling intensities can represent different responses of the spatial patterns when compared with the reference set(n=10,000). This study indicated that an appropriate sampling intensity should be taken into account in field samplings for evaluating species biodiversity properly. A sampling intensity of n>2,500 for species richness yielded satisfactory results to resemble the spatial pattern of the above-quantified reference set(n=10,000) in this sand dune region of China.
Species richness is an important indicator of species diversity. Different sampling intensities will very likely produce different species richness values. Substantial efforts have already been made to explicitly quantify the spatial variability of soil properties in different ecosystems. However, concerns still remain on how to characterize the effect of different sampling intensities on plant species richness within a given region. This study characterized the spatial variability of plant species richness and the species distribution pattern in a 25-hm2 sand dune plot in northeastern Inner Mongolia, China by using an intense sampling method(n=10,000). We also evaluated the overall effect of information loss associated with the spatial variability and distribution patterns of species richness under various scenarios of sampling intensities(n=10,000 to 289). Our results showed that semi-variograms of species richness were best described by the spherical and exponential models. As indicated by the nugget/sill ratio, species richness was different in terms of the strength of the spatial relationship. The different spatial metrics of species richness with increasing sampling intensities can represent different responses of the spatial patterns when compared with the reference set(n=10,000). This study indicated that an appropriate sampling intensity should be taken into account in field samplings for evaluating species biodiversity properly. A sampling intensity of n>2,500 for species richness yielded satisfactory results to resemble the spatial pattern of the above-quantified reference set(n=10,000) in this sand dune region of China.
基金
funded by the National Basic Research Program of China (2013CB429903)