摘要
针对最小二乘支持向量机(LSSVM)在缺陷检测过程中的模型参数选择问题,提出了一种改进的万有引力搜索算法(IGSA)对模型参数进行优化,该算法有效地克服了标准GSA易陷入局部最优解且优化精度不高的缺点,显著提高了原算法中物体的探索能力与开发能力。通过利用UCI数据库的数据进行分类验证,相比交叉验证、标准GSA、遗传和粒子群优化的LSSVM,IGSA-LSSVM分类模型有效提高了分类正确率和模型的泛化能力。最后,把该模型应用于标签缺陷自动检测中,取得了良好的效果。
In the light of the problems existed in selecting the parameters of LSSVM model in the process of defect detection,the Improved Gravitational Search Algorithm( IGSA) is brought in and applied to optimize the model parameters of LSSVM. The algorithm overcomes the shortcoming of standard GSA that is easy to fall into local optimum and has low accuracy and effectively improves the exploration ability and development ability of GSA. Experiments are carried out classification validation on the data sets from the UCI database. Compared with cross-validation,standard GSA,LSSVM of genetic algorithm and particle swarm optimization,the classification model of IGSA-LSSVM has the better classification accuracy and generalization ability. Finally,this model is applied to the label defect automatic detection,and has obtained a good result.
出处
《电测与仪表》
北大核心
2016年第7期89-94,共6页
Electrical Measurement & Instrumentation
关键词
万有引力搜索算法
最小二乘支持向量机
分类模型
缺陷检测
gravitational search algorithm
least squares vector machine
classification model
defect detection