期刊文献+

Rayleigh分布总体参数的均值填补估计和检验 被引量:1

Parameter Estimation and Hypothesis Testing of Rayleigh Population under Mean Imputation with Missing Date
下载PDF
导出
摘要 基于均值填补缺失数据方法,研究Rayleigh分布总体参数的极大似然估计问题及两个Rayleigh分布总体参数相等的假设检验问题,证明了基于均值填补数据的极大似然估计的强相合性以及渐近正态性,给出了检验两总体参数相等的检验统计量以及检验统计量的极限分布. Based on the method of imputing missing date with mean,the maximum likelihood estimations of Rayleigh distribution and hypothesis test on the equality of two Rayleigh distribution parameters are studied.The strong consistency and asymptotic normality of maximum likelihood estimation are proved. Furthermore,statistic on testing the equality of two Rayleigh distribution parameters and its limit distribution are provided.
出处 《佳木斯大学学报(自然科学版)》 CAS 2016年第2期285-288,共4页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金(11571138) 吉林省科技发展计划项目(201201082)
关键词 数据缺失 均值填补 极大似然估计 假设检验 missing date mean imputation maximum likelihood estimation hypothesis testing
  • 相关文献

参考文献9

  • 1帅平,李晓松,周晓华,刘玉萍.缺失数据统计处理方法的研究进展[J].中国卫生统计,2013,30(1):135-139. 被引量:40
  • 2Horton , N J , Laird N M . Maximum likelihood analysis of gener- alized linear models with missing covariates [ J ]. Statist. Meth. Med. Res, 1999,8 ( 1 ) : 37 - 50.
  • 3Hartley, H O. Maximum Likelihood estimation from incomplete date [J]. Biometrics, 1958, 14(2): 174-194.
  • 4Harvey, A C, Phillips et al. Maximum Likelihood estimation of re- gression models with autoregressive - moving average disturb- ances [ J]. Biometrika, 1979,66 ( 1 ) :49 - 58.
  • 5Haitovsky Y. Missing data in regression analysis [ J]. Journal of the Royal Statistical Society B, 1968, 30 (1.) : 67 -82.
  • 6Han J, Kamber M. Date Mining Concepts and Techniques[ M]. Harcourt India :Morgan Kaufmann Publishers,2006.
  • 7Rubin D B. Multiple imputations for nonresponse in surveys[ J ]. New York: John Wiley & Sons Inc, 1987.
  • 8赵志文,付志慧.具有部分缺失数据的两个瑞利分布总体参数的估计与检验[J].北华大学学报(自然科学版),2008,9(3):202-204. 被引量:6
  • 9赵志文,M.S.Abdalroof,盛丹姝.定时截尾下具有缺失数据两个Rayleigh分布总体参数的估计和检验[J].吉林大学学报(理学版),2013,51(6):1090-1094. 被引量:12

二级参考文献13

  • 1[3]Balakrishnan N,Abbas Rasouli.Exact Likelihood Inference for Two Exponential Populations under Joint Type-II Censoring[J].Computational Statistics & Data Analysis,2008,52(5):2725-2738.
  • 2茆诗松,王静龙,濮小龙.高等数理统计学[M].北京:高等教育出版社,2000:362-367.
  • 3Little R J A, Rubin D B. Statistical Analysis with Missing Data [M]. New York: John Wiley & Sons, 2002.
  • 4SUN Xiao-qian, ZHOU Xian, WANG Jing-long. Confidence Intervals for the Scale Parameter of Exponential Distribution Based on Type Ⅱ Doubly Censored Sample [J]. Journal of Statistical Planning and Inference, 2008, 138(7) : 2045-2058.
  • 5Harter H L, Moore A H. Point and Interval Estimators, Based on m Order Statistics, for the Scale Parameter of a Weibull Population with Known Shape Parameter [J]. Technometrics, 1965, 7(3) : 405-422.
  • 6Howlader H A, Hossain A. On Bayesian Estimation and Prediction from Rayleigh Based on Type Ⅱ Censored Data [J]. Communications in Statistics: Theory and Methods, 1995, 24(9): 2251-2259.
  • 7Wu S J, Chen D H, Chen S T. Bayesian Inference for Rayleigh Distribution under Progressive Censored Sample [J]. Applied Stochastic Models in Business and Industry, 2006, 22(3) : 269-279.
  • 8赵志文,付志慧.具有部分缺失数据的两个瑞利分布总体参数的估计与检验[J].北华大学学报(自然科学版),2008,9(3):202-204. 被引量:6
  • 9金勇进.调查中的数据缺失及处理(Ⅰ)——缺失数据及其影响[J].数理统计与管理,2001,20(1):59-62. 被引量:25
  • 10张志华.定时截尾情况下简单加速寿命试验优化设计的比较[J].应用概率统计,2001,17(3):303-307. 被引量:8

共引文献53

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部