期刊文献+

基于三角形演化机制的社会网络模型研究 被引量:4

Research on triangle evolving mechanism model of social network
下载PDF
导出
摘要 详细介绍了社会网络模型的演化历程以及三元闭包在社会网络中的重要作用,在社会网络中新节点的连接对以后的连接具有一定的影响,鉴于三元闭包在社会网络演化过程中具有的巨大作用以及BA无尺度网络模型本身具有的局限性,提出了一种基于三角形演化机制的社会网络模型。通过仿真实验得出该网络模型遵循幂率分布,与BA模型相比该社会网络模型有更强的鲁棒性、较小的聚集系数和较大的平均路径长度。 This article introduces the social network models' evolution as well as the important role of triadic closure in the social network, in the social network new link has certain influence to the future link, in view of the fact that triadic closure has tremendous role in the process of evolution about social network model as well as the limitation of the scale-free networks itself, it proposes one kind of social networks model based on triangle evolving mechanism. Through the simulation test it can obtain that this network model obeys the power-law distribution, compared with BA it has stronger robustness, smaller clustering coefficient and bigger average path length.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第8期111-114,共4页 Computer Engineering and Applications
基金 清华携手Google助力西部教育-科研培育项目 国家自然科学基金(No.61363019) 青海省创新能力促进计划项目(No.2014-ZJ-718 No.2014-ZJ-941Q) 青海省科技厅应用基础研究(No.2014-ZJ-718)
关键词 社会网络 三元闭包 幂率分布 聚集系数 平均路径长度 social network triadic closure power-law distribution clustering coefficient average path length
  • 相关文献

参考文献15

  • 1Albert R,Jeong H,Barabasi A L.Diameter of the worldwide web[J].Nature,1999,401(6769):130-131.
  • 2Albert R,Barabási A L.Statistical mechanics of complex networks[J].Reviews of Modern Physics,2002,74(1):47-98.
  • 3Watts D J,Strongatz S H.Collective dynamics of‘smallworld’networks[J].Nature,1998,393(6684):440-442.
  • 4Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286:509-512.
  • 5Pastor-Satorras R,Vespignani A.Evolution and structure of the Internet:a statistical physics approach[M].Cambridge,England:Cambridge University Press,2004.
  • 6Milgram S.The small world problem[J].Psychology Today,1967:60-67.
  • 7Travers J,Milgram S.An experimental study of the small world problem[J].Sociometry,1969:425-443.
  • 8刘建国,党延忠,王众托.Multistage Random Growing Small-World Networks with Power-Law Degree Distribution[J].Chinese Physics Letters,2006,23(3):746-749. 被引量:5
  • 9Xiao W J,Parhami B.Cayley graphs as models of deterministic small-world networks[J].Inf Process Lett,2006,97:115-117.
  • 10Newman M E J,Park J.Why social networks are different from other types of networks[J].Phys Rev E,2003.

二级参考文献52

  • 1Watts D J and Strogatz S H 1998 Nature 393 440.
  • 2Barabási A L and Albert R 1999 Science 286 509.
  • 3Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47.
  • 4Dorogovtsev S N and Mendes J F F 2002 Adv. Phys. 511079.
  • 5Newman M E J 2003 SIAM Rev. 45 167.
  • 6Wang X F 2002 Int, J. Bifurcat. Chaos 12 885.
  • 7Li W and Cai X 2004 Phys. Rev. E 69 046106.
  • 8Waag R and Cai X 2005 Chin. Phys. Lett. 22 2715.
  • 9Chi L P et al 2003 Chin. Phys. Lett. 20 1393.
  • 10Xu T et al 2004 Int. J. Mod. Phys. B 18 2599.

共引文献4

同被引文献55

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部