期刊文献+

基于Kinect传感器的移动机器人环境检测及行为学习 被引量:2

Mobile robot environment detection and behavior learning based on Kinect sensor
下载PDF
导出
摘要 研究了一种基于深度图像和强化学习算法的移动机器人导航行为学习方法。该方法利用机器人装配的Kinect传感器检测工作环境信息,然后对获取的深度图像数据和视频图像进行处理、融合和识别,并由此构建机器人任务学习的状态空间,最终利用强化学习方法实现移动机器人的导航任务的自学习。该方法的有效性通过实验得到验证。实验表明,该方法能够使机器入具有较强的环境感知能力,并能够通过自学习的方式掌握行为能力。 A behavior learning algorithm for mobile robot navigation based on depth images and reinforcement learning is proposed. The algorithm uses the Kinect sensor on a mobile robot to capture the environmental data of the robot, then, processes, fuses and identifies the data of depth images and video images among them to establish the state space for robot learning, and finally, uses the reinforcement learning method to implement the mobile robot' s self- learning of navigation tasks. The effectiveness of proposed algorithm was verified by experiment. The experimental results show that the method can make a mobile robot posses the stronger ability of perceiving environments and ca- pacity of mastering behaviors by self-learning.
出处 《高技术通讯》 CAS CSCD 北大核心 2016年第1期8-15,共8页 Chinese High Technology Letters
基金 国家自然科学基金(60905054) 辽宁省高等学校优秀科技人才支持计划(LR2015045) 辽宁省自然科学基金(2015020010)资助项目
关键词 移动机器人导航 Kinect传感器 深度图像 强化学习(RL) mobile robot navigation, Kinect sensor, depth image, reinforcement learning (RL)
  • 相关文献

参考文献15

  • 1Stoyanov T, Mojtahedzadeh R, Andreasson H, et al. Com- parative evaluation of range sensor accuracy for indoor mo- bile robotics and automated logistics applications. Robotics and Autonomous Systems, 2013, 61:1094-1105.
  • 2杨东方,王仕成,刘华平,刘志国,孙富春.基于Kinect系统的场景建模与机器人自主导航[J].机器人,2012,34(5):581-589. 被引量:31
  • 3Tolgyessy M, Hubinsky P. The Kinect sensor in robotics education. In: Proceedings of the 2nd Robotics in Educa- tion, Vienna, Austria, 2011. 143-146.
  • 4刘鑫,许华荣,胡占义.基于GPU和Kinect的快速物体重建[J].自动化学报,2012,38(8):1288-1297. 被引量:50
  • 5Han J G, Shao L, Xu D, et al. Enhanced computer vision with Microsoft Kinect sensor: a review. IEEE Transactions on Cybernetics, 2013, 43(5) : 1318-1334.
  • 6罗元,谢彧,张毅.基于Kinect传感器的智能轮椅手势控制系统的设计与实现[J].机器人,2012,34(1):110-113. 被引量:71
  • 7Sutton R S, Barto A G. Reinforcement learning: an intro- duction. Cambridge : MIT Press, 1998.
  • 8McPartland M, Gallagher M. Reinforcement learning in first person shooter games. IEEE Transactions on Computa- tional Intelligence and AI in Games, 2011, 3 ( 1 ) : 43-56.
  • 9Chen C L, Li H X, Dong D Y. Hybrid control for robot navigation--a hierarchical Q-learning algorithm. IEEE Ro- botics & Automation Magazine, 2008, 15 (2) : 37-47.
  • 10Yamaguchi A, Takamatsu, Ogasawara T. OCOB : action space for reinforcement learning of high DoF robots. Auton- omous Robots, 2013, 34(4): 327-346.

二级参考文献69

  • 1刘进,张天序.图像不变矩的推广[J].计算机学报,2004,27(5):668-674. 被引量:47
  • 2Van den Bergh M, Van Gool L. Combining RGB and ToF cameras for real-time 3D hand gesture interaction[C]//IEEE Workshop on Application of Computer Vision. Piscataway, N J, USA: IEEE, 2011: 66-72.
  • 3Pang Y Y, Ismail N A, Gilbert P L S. A real time vision-based hand gesture interaction[C]//4th Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation. Piscataway, NJ, USA: IEEE, 2010: 237-242.
  • 4Kao M C, Li T H S. Design and implementation of interaction system between humanoid robot and human hand gesture[C]//Proceeding of SICE Annual Conference. Piscataway, NJ, USA: IEEE, 2010: 1616-1621.
  • 5Lee S, Choi J, Oh S, et al. A real-time 3D IR camera based on hierarchical orthogonal coding[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 2035-2040.
  • 6Huang J, Ma Z, Hu Y, et al. Robotic 3D structured light scanning system based on external axle[C]//International Conference on Intelligent Computation Technology and Automation. Piscataway, NJ, USA: IEEE, 2008:1126-1129.
  • 7Hu M K. Visual pattem recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962, 8(2): 179-187.
  • 8Murthy G R S, Jadon R S. Hand gesture recognition using neural networks[C]//2nd International Advance Computing Conference. Piscataway, NJ, USA: IEEE, 2010: 134-138.
  • 9马颂德 张正友.计算机视觉[M].北京:科学出版社,2003,9.52-71.
  • 10Hirokik, Minoru A, Yasuo K, et al. RohoCup: a challenge problem for AI and robotics[A]. Hirokik RoboCup-97: Robot Soccer World Cup Ⅰ[C]. Berlin: Springer, 1998.1 - 19.

共引文献146

同被引文献12

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部