摘要
针对航天器姿态控制过程中同时存在执行器故障、安装偏差与控制受限的多约束问题,提出一种基于积分滑模面的自适应鲁棒姿态容错控制方法,所设计的控制器在满足执行器控制能力的饱和受限约束的条件下确保系统稳定;同时,通过引入控制参数在线自适应学习策略以提高对干扰、安装偏差以及故障变化的鲁棒性,进而减小对这些信息的依赖能力,并基于Lyapunov方法分析了系统稳定性.通过数值仿真结果表明,提出的自适应积分滑模容错控制算法能有效的保证执行器故障时航天器姿态控制系统的稳定性,并具有较强的鲁棒性.
A fauh tolerant control scheme based on integral sliding mode surface is developed for spacecraft attitude stabilization in the presence of actuator faults, misalignments, magnitude saturation and external disturbances simultaneously. This approach is based on a novel integral-type sliding mode control strategy to compensate for these un-desired issues without controller reconfiguration. Especially, it guarantees the reachability of the system states by involving adaptive control technique to relax the boundary information in advance. A sufficient condition for the controller to accommodate magnitude saturation is also presented and then the fault tolerant attitude control system can be guaranteed theoretically to be asymptotically stable by using Lyapunov method. Numerical simulation results shows that the proposed control law can quarantee the stability of the spacecraft attitude control system in the presence of actuators' failures, and it has good robust performance.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2016年第4期20-25,共6页
Journal of Harbin Institute of Technology
基金
国家自然科学基金(61174200
61273175)
教育部新世纪优秀人才计划(NCET-11-0801)
黑龙江省青年基金(QC2012C024)
高等学校博士学科点专项科研基金(20132302110028)
关键词
航天器
容错控制
输入饱和
执行器故障
安装偏差
spacecraft
fault tolerant control
input saturation
actuator fault
misaligmnent