期刊文献+

水下爆炸船体结构响应间断伽辽金法数值模拟 被引量:2

Numerical simulation of the response for Hull plates subjected to underwater explosion based on RKDG method
下载PDF
导出
摘要 为求解水下爆炸强间断流场,采用Level Set方法定位多相流界面位置,应用虚拟流体方法处理邻近界面两侧物理量,并用RKDG方法进行空间和时间的离散,求解流场的Euler方程,并进行一维、二维评价,计算结果能够较好地反映水下爆炸冲击波产生、传播、反射和爆炸产物的膨胀等现象.最后,结合大型非线性有限元软件ABAQUS,模拟了船体板在水下爆炸载荷作用下的变形和响应特征.模拟结果表明,间断迦辽金法能够实现对水下爆炸船体结构响应精确模拟,板架结构响应与爆心距离成反比. In order to solve the underwater explosion flow field with large discontinuities, Level Set method was applied to track the interface position of the multi-medium flow, Ghost Fluid method was used to calculate the physical parameter of both sides of the interface, time and space were discretized by Runge-Kutta Discontinuous Galerkin Method, Euler equations of the flow field were solved. One-dimensional and two-dimensional assessments were conducted by RKDG approach. The results reflect the phenomena of underwater explosion shock wave generation, propagation, reflection and explosion products expansion. Finally, the shock responses and damage characteristics of hull plates under shock load were simulated with the nonlinear FEM softeware ABAQUS. The RKDG method can be applied to simulate the hull plates response with high accuracy. The response of hull plates is inversely proportional to the blast center distance.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第4期139-143,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(51109042) 中国博士后科学基金(2012M520707) 黑龙江省自然科学基金(E201124)
关键词 水下爆炸 间断伽辽金 载荷计算 结构响应 有限元 数值模拟 underwater explosion RKDG shock load calculation hull plates response FEM numerical simulation
  • 相关文献

参考文献13

  • 1SHIN Y S, SCHNEIDER N A. Ship shock trial simulation of USS Winston S. Churchill ( DDG 81 ) : modeling and simulation strategy and surrounding fluid volume effects [ C ]//Proceedings of the 74'l' Shock and Vibration Symposium. San Diego, CA, Oct. : [s.n.], 2003: 27-31.
  • 2崔杰,张阿漫,郭君,李世铭,黄超.舱段结构在气泡射流作用下的毁伤效果[J].爆炸与冲击,2012,32(4):355-361. 被引量:12
  • 3SUSANTO A, IVAN L, De STERCK H, et al. High-order central ENO finite-wlume scheme for ideal MHD [ J ]. Journal of Computational Physics, 2013, 250: 141-164.
  • 4JEONG W, SEONG J. Gmparison of effects on technical variances of computational fluid dynanfics (CFD) software based on finite elennt and finite volmne nthods [ J ]. International Jounud of Meclmnieal Seiezxes, 2014, 78: 19-26.
  • 5QIU Jianxian, I.IU Tiegang, KHOO B C. Simulations of compressible two-medium flow by runge-kutta discontinuous galerkinmethods with the ghost fluid method [ J ]. Communi- cations in Computational Physics, 2008, 3(3) : 479-504.
  • 6张学莹,赵宁,王春武.可压缩多介质流体数值模拟中的Level-Set间断跟踪方法[J].计算物理,2006,23(5):518-524. 被引量:2
  • 7JOHNSEN E.Numerical simulations of non-spherical bubble collapse: with applications to shockwave lithotripsy [ D ]. Pasadena: California Institute of Technology, 2008.
  • 8ZHU Jun, LIU Tiegang, QIU Jianxian, et al. RKDG methods with WENO limiters for unsteady cavitating flow [J]. Computers & Fluids, 2012, 57: 52-65.
  • 9BILLET G, RYAN J, BORREL M. A Runge Kutta Discontinuous Galerkin approach to solve reactive flows on conforming hybrid grids: the parabolic and source operato,'s [J]. Computers & Fluids, 2014, 95: 98-115.
  • 10JOSHER S, FEDKIW R P. Level set methods: an overview and some recent results [ J ]. Journal of Computational Physics, 2001, 169(2): 463-502.

二级参考文献41

  • 1陈荣三,蔚喜军.一维多介质可压缩Euler方程的高精度RKDG有限元方法[J].计算物理,2006,23(1):43-49. 被引量:4
  • 2姚熊亮,张阿漫.简单Green函数法模拟三维水下爆炸气泡运动[J].力学学报,2006,38(6):749-759. 被引量:28
  • 3董海,刘建湖,吴有生.水下爆炸气泡脉动作用下细长加筋圆柱壳的鞭状响应分析[J].船舶力学,2007,11(2):250-258. 被引量:23
  • 4Shyue K M.An efficient shock-capturing algorithm for compressible multicomponent problems[J].J Comput Phys,1998,142:208-242.
  • 5Karni S.Multicomponent flow calculations by a consistent primitive algorithm[J].J Comput Phys,1994,112:31 -43.
  • 6Fedkiw R,Aslam T,Merriman B,et al.A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method)[J].J Comput Phys,1999,152:457-492.
  • 7Fedkiw R P.Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method[J].J Comput Phys,2002,175:200-224.
  • 8Caiden R,Fedkiw R P,Anderson C.A numerical method for two-phase flow consisting of separate compressible and incompressible regions[J].J Comput Phys,2001,166:1-27.
  • 9Fedkiw R,Aslam T,Merriman B,et al.The ghost fluid method for deflngration and detonation discontinuities[J].J Comput Phys,1999,154:393-427.
  • 10Nguyen D Q,Fedkiw R P,Kang M.A boundary condition capturing method for incompressible flame discontinuities[J].J Comput Phys,2001,172:71-78.

共引文献16

同被引文献90

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部