期刊文献+

基于RGB颜色模型的红富士苹果表皮红色区域检测 被引量:12

Detection of Red Region of Fuji Apple Based on RGB Color Model
原文传递
导出
摘要 水果的颜色是水果分级的重要依据,影响着消费者的购买欲望。研究了一种基于RGB颜色模型的红富士苹果表皮红色区域检测算法。通过苹果RGB图像的光照补偿,降低光照变化和不均匀性带来的影响。在此基础上,计算各像素R、G、B分量的G/B和R/G比值,通过训练获得其分割阈值,实现苹果图像和背景的准确分割。最后用超红-超绿阈值分割法检测分割后的苹果图像的红色区域并计算其面积。实验结果表明:基于RGB颜色空间的红富士苹果表皮红色区域检测算法能够准确地检测出果皮表面的红色区域,满足红富士苹果颜色等级检测的需要。 Color of fruits is an important index for the classification of fruits, which will affect consumers′ purchase desire. An algorithm based on RGB color model is studied to detect the red area of Fuji apple. The light compensation of image is used to reduce the effect of illumination change and nonuniformity of light source. Two parameters of R/G and G/B in RGB image are calculated, and the thresholds of these two parameters are obtained by using training samples to achieve accurate segmentation for apple and background. The excess red minus excess green threshold segmentation method is applied to detecting and calculating the red region of apple surface. The experimental results show that the algorithm based on RGB color model is able to accurately detect the red area of the apple surface. The algorithm can meet the requirement of color grading detection of Fuji apples.
出处 《激光与光电子学进展》 CSCD 北大核心 2016年第4期58-64,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61271384 61275155) 江苏省自然科学基金(BK2011148)
关键词 图像处理 苹果 RGB颜色模型 颜色检测 分级 image processing apple RGB color model color detection classification
  • 相关文献

参考文献23

  • 1刘鹏, 屠康, 潘磊庆, 等. 基于模糊机器视觉聚类的柿果表面缺陷识别研究[J]. 光学学报, 2009, 29(s2): 138-144.
  • 2韩东海,王加华.水果内部品质近红外光谱无损检测研究进展[J].中国激光,2008,35(8):1123-1131. 被引量:49
  • 3Mizushima A, Lu R. A low- cost color vision system for automatic estimation of apple fruit orientation and maximum equatorial diameter[J]. Transactions of the ASABE, 2013, 56(3): 813-827.
  • 4Warner G. Super-efficient picking system[J]. Good Fruit Grower, 2009, 60(2): 28-29.
  • 5Zhou J, Yin H, Liu J, et al.. Method of image fusion for apple surface quality detection[C]. International Conference on Automatic Control & Artificial Intelligence, 2012: 1339-1342.
  • 6Bennedsen B S, Peterson D L, Tabb A. Identifying defects in images of rotating apples[J]. Computer and Electronics in Agriculture, 2005, 2(48): 92-102.
  • 7Wachs J P, Stern H I, Burks T. Low and high-level visual feature-based apple detection from multi-modal images[J]. Precision Agriculture, 2010, 11(6): 717-735.
  • 8周薇,刘刚(指导),马晓丹,冯娟.不同生长时期果树多源图像的配准方法研究[J].光学学报,2014,34(2):169-175. 被引量:7
  • 9李庆中,张漫,汪懋华.基于遗传神经网络的苹果颜色实时分级方法[J].中国图象图形学报(A辑),2000,5(9):779-784. 被引量:52
  • 10冯斌,汪懋华.基于颜色分形的水果计算机视觉分级技术[J].农业工程学报,2002,18(2):141-144. 被引量:94

二级参考文献159

共引文献274

同被引文献110

引证文献12

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部