期刊文献+

基于多重演化模式重构的水文预报模型及应用 被引量:3

Application of hydrological forecast model based on multiple evolutionary reconstruction
下载PDF
导出
摘要 因长期受人类活动、气候变化等多重因素作用,水文时间序列表现出多时间尺度、多频率、动态变化、自记忆性等复杂性特征,增加了水文预报结果的不确定性。本文将经验模态分解模型,核主成分分析模型和支持向量机模型耦合,建立了针对复杂性水文时间序列的预报模型,并采用NASH效率系数、自相关系数、相对误差作为模拟预测精度及参数率定的多目标判断标准。模型应用于黄河花园口水文站径流序列的长期水文预报中,结果表明:模型预报时段长,具有较好的预测准确性和实践应用价值。该模型为多重因素作用的复杂性水文时间序列预报提供了一种方法。 Due to the long-term effects of human activities and climate change,the hydrological time series exhibit more complicated variation features such as multiple time scales,many ruense dynamic change and self memory function,which increase the uncertainty of hydrological forecast result. The pape established a new hydrologic forecast model based on the empirical mode decomposition model,kernel principal component analysis model and support vector machine model,and choose Nash efficiency,self correlation coefficient,relative error as the multi objective criteria of forecasting precision and parameter calibration. The model was applied to the long-term runoff series at Huayuankou hydrology station of the Yellow River. The results show that the forecast time of the model is long and has better accuracy and practical value. The model can provide a method for the prediction of complex hydrological time series of multiple factors effect.
出处 《水资源与水工程学报》 2016年第1期108-113,共6页 Journal of Water Resources and Water Engineering
基金 国家自然科学基金重点项目(50939004) 中央高校基本科研业务费专项资金资助项目(310829161006)
关键词 水文学及水资源 水文预报模型 模式重构 hydrology and water resources hydrologic forecast model evolution mode reconstruction
  • 相关文献

参考文献11

  • 1李荣峰,沈冰,张金凯.基于相空间重构的水文自记忆预测模型[J].水利学报,2006,37(5):583-587. 被引量:23
  • 2王文圣,金菊良,李跃清.水文随机模拟进展[J].水科学进展,2007,18(5):768-775. 被引量:30
  • 3李强,王太勇,王正英,黄毅.基于EMD和支持向量数据描述的故障智能诊断[J].中国机械工程,2008,19(22):2718-2721. 被引量:13
  • 4Alemu E T,Palmer R N,Polebitski A,et al.Decision support system for optimizing reservoir operations using ensemble streamflow predictions[J].Journal of Water Resources Planning and Management-Asce,2011,137(1):72-82.
  • 5Sajikumar N,Thandaveswara B S.A non-linear rainfallrunoff model using an artificial network[J].Journal of Hydrology,1999,216(1):32-55.
  • 6Pal I,Lall U,Robertson A W,et al.Predictability of western himalayan river flow:melt seasonal inflow into Bhakra Reservoir in Northern India[J].Hydrology and Earth System Sciences Discussions,2012,9(7):8137-8172.
  • 7Mitani Y,Tsutsumoto K,Kagawa N.Time series prediction of acoustic signals using neural network model and wavelet shrinkage[C]∥.Processings of the 10th International Congress on Sound and Vibration,Stockholm,Sweden:IIAV,2003:4189-4196.
  • 8Boucher M A,Tremblay D,Delorme L,et al.Hydro-economic assessment of hydrological forecasting systems[J].Journal of Hydrology,2012,416-417:133-144.
  • 9刘兴杰,米增强,杨奇逊,樊小伟.一种基于EMD的短期风速多步预测方法[J].电工技术学报,2010,25(4):165-170. 被引量:33
  • 10李春晖,郑小康,杨志峰,庞爱萍,沈楠.黄河天然径流量变化趋势及其影响分析[J].北京师范大学学报(自然科学版),2009,45(1):80-85. 被引量:33

二级参考文献109

共引文献143

同被引文献44

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部