期刊文献+

基于数据驱动的非线性有源噪声MFFsLMS算法

MFFs LMS algorithm for nonlinear active noise control based on data driven
下载PDF
导出
摘要 研究了非线性有源噪声控制(ANC)问题。采用函数连接型人工神经网络,以勒让德多项式作为扩展函数,提出了基于数据驱动的无模型滤波-s最小均方(MFFs LMS)算法。采用同步扰动随机逼近算法,估算系统的输出误差梯度。有效解决了因次路径时变所引起的系统稳定性问题。在理论分析的基础上,对该算法进行了仿真研究。仿真结果表明,当系统中呈现非线性及时变特性时,该方法能有效地抑制噪声且对系统次路径的变化具有良好的鲁棒性。 The nonlinear active noise control( ANC) is studied. Using the functional link artificial neural network and Legendre polynomials extension function,the model freeed filter-s least mean square( MFFs LMS) algorithm based on data driven is presented. The simultaneous perturbation stochastic approximation algorithm is used to estimate the gradient of the output error,which solves the stability problem caused by the time-varying characteristics of the secondary acoustic path. Based on theoretical analysis,computer simulations are carried out to validate the effectiveness of the proposed algorithm.Simulation results show that the proposed algorithm has good noise-canceling performance when the ANC system exhibits nonlinear,and is robust against the change of ANC secondary acoustic path.
出处 《北京信息科技大学学报(自然科学版)》 2016年第2期13-17,共5页 Journal of Beijing Information Science and Technology University
基金 国家自然科学基金资助项目(11172047) 北京市教育委员会科技计划面上项目(KM201511232023)
关键词 有源噪声控制 非线性 勒让德多项式 函数连接型人工神经网络 无模型 active noise control nonlinear Legendre polynomials functional link artificial neural network model free
  • 相关文献

参考文献14

  • 1Kuo S M, Morgan D R. Active noise control systems--algorithms and DSP implementations [M]. New York: Wiley, 1996.
  • 2Klippel W. Active attenuation of nonlinear sound: US,6005952[P]. 1999 - 12 -21.
  • 3Sicuranza G L, Carini A. On the accuracy of generalized Hammerstein models for nonlinear active noise control [ C ]// Pasquale Daponte. Proceedings of the 23rd IEEE Instrumentation and Measurement Technology Conference. Sorrento, Italy : IEEE, 2006 : 1411 - 1416.
  • 4Sicuranza G L, Carini A. A generalized FLANN filter for nonlinear active noise control [ J ]. IEEE Trans on Audio, Speech and Language Processing, 2011, 19 ( 8 ) : 2412 -2417.
  • 5Sicuranza G L, Carini A. On the BIBO stability condition of adaptive recursive FLANN filters with application to nonlinear active noise control [ J ]. and Languag IEEE Trans on Audio, Speech e Processing, 2012, 20( 1 ): 234 - 245.
  • 6George N V, Panda G. A robust filtered-s LMS algorithm for nonlinear active noise control [ J ]. Applied Acoustics, 2012, 73: 836 - 841.
  • 7George N V, Gonzalez A. Convex combination of nonlinear adaptive filters for active noise control [ J]. Applied Acoustics, 2014, 76: 157 - 161.
  • 8Beheraa K, Dasa D P, Subudhib B. Functional link artificial neural network applied to active noisecontrol of a mixture of tonal and chaotic noise [ J ]. Applied Soft Computing, 2014, 23:51 -60.
  • 9Beheraa S B, Dasb D P, Rout N K. Nonlinear feedback active noise control for broadband chaotic noise [ J]. Applied Soft Computing, 2014, 15:80-87.
  • 10George N V, Panda G. Active control of non- linear noise processes using cascaded adaptive nonlinear filter[ J]. Applied Acoustics, 2013, 74 : 217 - 222.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部