期刊文献+

基于聚类分析的涡扇发动机的潜在故障检测 被引量:1

Potential failure detection of turbofan engine based on clustering analysis
下载PDF
导出
摘要 针对多变量的过程统计监控问题,提出了一种基于聚类分析的潜在故障检测的方法。首先采用基于密度的减法聚类算法(SC)对数据进行聚类,然后结合基于分割的最大熵模糊聚类算法(MEFC)对数据再次聚类,利用聚类结果对数据进行状态划分并确定故障状态,最后实现潜在故障检测。通过对涡扇发动机数据集FD001进行实例验证,该方法能在故障发生的若干运行周期前检测到潜在故障。 For multivariate statistical process monitoring,the idea of potential failure detection based on clustering analysis is proposed. The data is clustered by means of density-based subtractive clustering and segmentation-based maximum entropy fuzzy clustering successively. Data based on clustering results is divided into several states and one state is thought of as faulty state,by which potential failure is detected. Through a case study performed on turbofan engines data FD001,the proposed method can detect potential faults in a number of operating cycles before failure occurs.
作者 冯永辉 马洁
出处 《北京信息科技大学学报(自然科学版)》 2016年第2期88-91,共4页 Journal of Beijing Information Science and Technology University
关键词 涡扇发动机 数据驱动 故障检测 聚类分析 潜在故障 turbofan engine data driven failure detection clustering analysis potential failure
  • 相关文献

参考文献10

  • 1Uckun S,Goebel K,Lucas P.Standardizing research methods for prognostics[C].Prognostics Health Manage,CO,USA,2008:1-10.
  • 2马洁,党爱民,李刚,周东华.基于MSPM的故障诊断技术研究现状与展望[J].华侨大学学报(自然科学版),2012,33(6):601-607. 被引量:2
  • 3Thomhill N F,Shah S L,Huang B,et al.Spectral principal component analysis of dynamic process data[J].Control Engineering Practice,2002,10(8):833-846.
  • 4Kruger U,Kumar S,Littler T.Improved principal component monitoring using the local approach[J].Automatic.2007,43(9):1532-1542.
  • 5Lee J M,Qin S J,Lee I B.Fault detection of non-linear processes using kernel independent component analysis[J].Canadian Journal of Chemical Engineering,2007,85(4):526-536.
  • 6张宵,马洁.数据驱动PCA、ICA和KICA故障检测仿真比较[J].北京信息科技大学学报(自然科学版),2014,29(5):56-61. 被引量:5
  • 7孙绍辉,王华伟,李伟.潜在故障期内航空发动机的剩余寿命预测[J].航空计算技术,2012,42(1):8-11. 被引量:5
  • 8Wang Ying,Wang Wen-bin,Fang Shufen.Research on a model of the residual life prediction for condition-based maintenance[J].Management Science and Engineering,2006,10:536-539.
  • 9Feng Xue,Piero Bonissone,Anil Varma.An instance-based method for remaining useful life estimation for aircraft engines[J].Journal of Failure Analysis and Prevention,2008,8(2):199-206.
  • 10Kamran Javed,Rafael Gouriveau,Noureddine Zerhouni.Novel failure prognostics approach with dynamic thresholds for machine degradation[C].Industrial Electronics Society,IECON 2013-39th Annual Conference of the IEEE,Austria,2013:4404-4409.

二级参考文献72

  • 1左洪福,张海军,戎翔.基于比例风险模型的航空发动机视情维修决策[J].航空动力学报,2006,21(4):716-721. 被引量:50
  • 2Todd D Batzel,David C Swanson.Prognostic Health Manage-ment of Aircraft Power Generators[J].IEEE Transactions onAerospace and Electronic Systems,2009,45(2):473-482.
  • 3Wenbin Wang.A Two-stage Prognosis Model in Conditionbased Maintenance[J].European Journal of Operational Re-search,2007,182:1177-1187.
  • 4Wang Ying,Wang Wen-bin,Fang Shu-fen.Research on a Model of the Residual Life Prediction for Condition-basedMaintenance[J].Management Science and Engineering,2006,10:536-539.
  • 5Feng Xue,Piero Bonissone,Anil Varma.An Instance-BasedMethod for Remaining Useful Life Estimation for Aircraft En-gines[J].Journal of Failure Analysis and Prevention,2008,8(2):199-206.
  • 6Nagi Gebraeel.Mark Lawley Residual Life Predictions FromVibration-Based Degradation Signals:A Neural Network Ap-proach A Neural Network Approach[J].IEEE Transactionson Industrial Electronics,2004,51(3):694-700.
  • 7周东华,李钢,李元,等.数据驱动的工业过程故障诊断技术——基于主元分析与偏最小二乘的方法[M].北京:科学出版社,2011.
  • 8QIN S J. Statistical process monitoring: Basics and beyond[J]. Journal of Chemometrics, 2003,17 (8/9):480-502.
  • 9WISE B M, RICKER N L, VELTKAMP D F, et al. A theoretical basis for the use of principal component models for monitoring multivariate processes[J]. Process Control and Quality, 1990,1(1):41-51.
  • 10DUNIA R, QIN S J. Joint diagnosis of process and sensor faults using principle component analysis[J]. Control Engineering Practice, 1998,6(4) :457-469.

共引文献9

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部