摘要
遗传算法具有强大的全局搜索能力,并以其较好的适应度已经逐渐应用到土木结构损伤识别领域。基于模糊优选理论的改进遗传算法具有更快的收敛速度和更高的运算效率,将改进的遗传算法运用到实际桥梁结构的损伤识别中,结合数据融合方法将多种传感器采集到的不同数据进行集中处理,增加了识别结果的准确性。选用现场采集的位移、应力、加速度等参数进行损伤识别,通过Matlab软件编写程序,验证方法的可行性。结果表明,该方法能够有效识别结构各区域的损伤程度,并与传统遗传算法相比具有更好的性能。
Genetic algorithm has strong global search ability,and is known for its good robustness,it has been gradually applied to structural damage identification in civil field.The improved genetic algorithm based on fuzzy optimization theory has faster convergence speed and higher operation efficiency,the improved genetic algorithm is applied to the actual bridge structure damage identification,combined with the data fusion method to a variety of sensors to focus on the different data collected,increased the accuracy of identification results.Choose from the displacement field,stress,acceleration and so on to identify the damage parameters,through the Matlab software programming validation method is feasible,the results show that structure of this method can effectively identify the damage degree of the regional and compared with the traditional genetic algorithm has better performance.
出处
《公路》
北大核心
2016年第4期60-65,共6页
Highway
基金
国家自然科学基金项目
基于无线传感器网络与主体协作技术的大型结构损伤辨识的研究
项目编号61350008
关键词
桥梁
遗传算法
损伤识别
模糊优选
数据融合
genetic algorithm
damage identification
fuzzy optimization
bridge
data fusion