期刊文献+

校园无线局域网用户兴趣度算法分析

ANALYSIS OF USER INTEREST ALGORITHM IN CAMPUS WIRELESS LOCAL AREA NETWORK
下载PDF
导出
摘要 针对目前无线网络用户个性化需求的日益增长,现阶段的个性化校园网络用户服务研究在及时性、稳定性等方面无法满足实际应用的需求。本文提出了一种基于影响条件的无线局域网用户兴趣度矩阵相似度度量算法。首先,利用活跃度筛选出对无线局域网用户行为影响较明显的影响条件,如上网时间、地点等;其次,通过计算异常率进行数据处理,即清除上网行为前后有明显异常的数据;最后,利用本文提出的用户兴趣度矩阵模型,在无线局域网用户间进行相似度计算。实验结果表明,本文提出的用户兴趣度矩阵相似度度量算法在一定程度上提高了用户行为相似度聚类的准确性和有效性,并且减少了无效数据,降低相似度计算的复杂度,能够较好的应用于无线局域网用户行为具体研究中。 Focused on the issue that the individual campus network user research in the timeliness,stability and other aspects cannot meet the growing demands,an improved user’s Interest Matrix Similarity Algorithm (IMSA)based on dynamic constraints in wireless LANs was proposed in this paper. Firstly,user’s activity was used to filter the constraints which significantly affected the behaviors,such as time and place. Secondly,the abnormal rate was computed to process the exceptional data. At last,the user’s interest matrix model was proposed to compute mutual similarity of users in wireless LAN. The experimental results show that the proposed algorithm can effectively improve the accuracy of the user’s behavior similarity,by the same time it can reduce the quantity of meaningless data and the computational complexity of similarity,which has better performance in the study of wireless network user behavior.
出处 《山东师范大学学报(自然科学版)》 CAS 2016年第1期25-30,共6页 Journal of Shandong Normal University(Natural Science)
基金 国家自然科学基金资助项目(9061200 61572301) 山东省自然科学基金资助项目(ZE2013FM008)
关键词 数字校园 网络用户行为 兴趣矩阵 矩阵聚类 digital campus network user behavior interest matrix matrix clustering
  • 相关文献

参考文献7

二级参考文献55

  • 1程光,龚俭,丁伟.网络测量及行为学研究综述[J].计算机工程与应用,2004,40(27):1-8. 被引量:14
  • 2缪红保,李卫.基于数据挖掘的用户安全行为分析[J].计算机应用研究,2005,22(2):105-107. 被引量:11
  • 3吕巍,蒋波,陈洁.基于K-means算法的中国移动市场顾客行为细分策略研究[J].管理学报,2005,2(1):80-84. 被引量:15
  • 4李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 5J Srivastava, et al. Web usage mining : Discovery and applications of usage patterns from web data[ J]. SIGKDD Explorations, 2000, 1 (2) :12 -23.
  • 6R Cooley, B Mobasher, J Srivastava. Data preparation for mining world wide web browsing patterns[ J ]. Knowledge and Information Systems, 1999,1 ( 1 ) :5 - 32.
  • 7B Mobasher, R Cooley. Creating adaptive Web sites through Usage2based clustering of URLs[ C]. Proc of the 1999 IEEE Knowledge and Data Engineering Exchange Workshop. New York : IEEE Press, 1999:32 - 37.
  • 8G Paliouras, et al. Clustering the users of large web sites into communities[ C]. Proc of the 17th lnt Conf on Machine Learning. San Mateo : Morgan Kaufmann, 2000. 719 - 728.
  • 9Y Fu, K Sandhu, M Shih. A generalization 2 based approach to clustering of Web usage session[ C]. Web Usage Analysis and User Profiling. New York :Springer2Verlag, 2000.21 - 38.
  • 10C Shahabi, A M Zarski, J Shah. Knowledge discovery from users web2page navigation[ C]. Proc of 7th Int Conf on Research Issues in Data Engineering. Birmingham: IEEE Computer Society Press, 1997.20 - 29.

共引文献233

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部