期刊文献+

基于增量学习的稀疏表示仿射目标跟踪算法研究

Research on Affine Object Tracking Using Sparse Representation Method Based on Incremental Learning
下载PDF
导出
摘要 针对传统目标跟踪算法在背景复杂.目标形态和光照条件剧烈变化情况下跟踪效果不佳的问题,提出了一种新的目标跟踪算法.该算法在粒子滤波框架下用仿射变换和Gabor特征表示图像,用模板字典稀疏表示候选目标,并用增量学习算法对模板字典进行更新.试验部分将该算法与其他跟踪算法在Matlab平台上进行比较,试验结果表明该算法具有鲁棒性强、跟踪效果好的优点. For improving the poor effect of traditional tracking algorithms under the condition of complicated background,significantly varying appearance and illumination,this paper proposes a novel algorithm for visual tracking.In the particle filter framework,images are represented by the use of the affine transformation and the Gabor feature. The candidate target is sparsely represented by a template dictionary and the template dictionary is renewed through the incremental learning algorithm. In the experimental section,our approach is compared with other visual tracking approaches in Matlab platform. Experimental results show that our approach has better performances and is more robust than other tracking approaches.
作者 侯跃恩
出处 《嘉应学院学报》 2016年第2期27-34,共8页 Journal of Jiaying University
基金 嘉应学院创新强校资助项目(CQX036)
关键词 目标跟踪 GABOR特征 稀疏表示 粒子滤波 增量学习 仿射变换 visual tracking Gabor feature sparse representation particle filter incremental learning affine transformation
  • 相关文献

参考文献22

  • 1DAVID A R,JONGWOO L,LIN R S,et al.Incremental Learning for Robust Visual Tracking[J],Int J Comput Vis,2008,77(1-3):125-141.
  • 2COMANICJU D,RAMESH V,MEER P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 3戴渊明,韦巍,林亦宁.基于颜色纹理特征的均值漂移目标跟踪算法[J].浙江大学学报(工学版),2012,46(2):212-217. 被引量:19
  • 4ALPER Y,Li X,Mubarak Shah.Contour-based Object Tracking with Occlusion Handling in Video Acquired Using Mobile Cameras[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(11):1531-1536.
  • 5LIU C J,HARRY W.Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition[J].IEEE Transactions on Image Processing,2002,11(4):467-476.
  • 6ZHANG W C,SHAN S G,GAO W,et al.Local Gabor Binary Pattern Histogram Sequence(LGBPHS):A Novel Non-Statistical Model for Face Representation and Recognition[C]//IEEE International Conference on Computer Vision.Beijing,China:IEEE,2005,1:786-791.
  • 7VOLKER K,ALEXANDER H,GERALD S.Affine Real-Time Face Tracking using Gabor Wavelet Networks[C]//15th International Conference on Pattern Recognition.Barcelrona,Spain:IEEE,2000,1:127-130.
  • 8HE C,ZHENG Y F,STANLEY C A.Object Tracking Using the Gabor Wavelet Transform and the Golden Section Algorithm[J].IEEE Transactions on multimedia,2002,4(4):528-538.
  • 9王年,丁业兵,唐俊,鲍文霞.带宽自适应的Mean Shift目标跟踪算法[J].华南理工大学学报(自然科学版),2011,39(10):44-49. 被引量:6
  • 10PEIHUA L,ZHANG T W,MA B.[J].Image and Vision Computing,2004,22(2):157-164.

二级参考文献24

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 3Comaniciu D, Meer P. Mean Shifl:a robust approach tn- ward feature space analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5 ) : 603-619.
  • 4Bradski G R. Real time face and object tracking as a com- ponent of a pereeptual user interface [ C ]//Proeeedings of IEEE Workshop on Applications of Computer Vision. Berlin : IEEE, 1998:214-219.
  • 5Comaniciu D, Ramesh V, Meet P. Real-time tracking of non-rigid objects using Mean Shift [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. SC Hilton Head Island: IEEE, 2000 : 142-149.
  • 6Comaniciu D, Ramesh V, Meet P. Kernel-based object tracking [ J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence ,2003,25 (5) :564-577.
  • 7Collins R T. Mean-Shift blob tracking through scale space [ C ]//Proceedings of IEEE Computer Society Conferenee on Computer Vision and Pattern Recognition. Los Almni- tos :IEEE,2003:234-240.
  • 8Li Zhi-dong, Chen Jing, Schraudolph N N. An improved Mean-Shift tracker with kernel prediction and scale op- timisation targeting for low-frame-rate video tracking [ C]// Proceedings of the 19th International Conference on Pat- tern Recognition. Florida Tampa : IEEE ,2008 : 1-4.
  • 9DRUMMOND T,CIPOLLA R.Real-time visual track-ing of complex structures[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2002,4(7):932-946.
  • 10COMANICIU D,RAMESH V,MEER P.Kernel-basedobject tracking[J].IEEE Transactions on Pattern Analy-sis and Machine Intelligence,2003,25(5):564-577.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部