期刊文献+

强海水混响背景下水中兵器攻击目标检测研究 被引量:32

Detection of weapon attack target in background of strong sea water reverberation
下载PDF
导出
摘要 水中兵器在对舰船目标攻击过程中受到海水混响杂波的影响,导致目标检测性能下降。传统方法采用时频分析方法进行目标检测,在信混比较低的情况下受到的干扰较强,导致虚警概率较高。提出一种舰船目标回波盲源分离的强海水混响背景下的水中兵器攻击目标检测算法。首先构建强海水混响干扰下的舰船目标回波模型,对舰船目标回波模型进行自相关匹配滤波,提取回波信号的高阶谱特征,实现目标信号的盲源分离,达到目标检测的目的。仿真结果表明,采用该算法进行目标检测,准确检测概率较高,降低了虚警概率,提高了水中兵器对目标的准确打击能力。 Underwater weapon in ship target attack process is affected by water reverberation clutter effects,resulting in target detection performance degradation,using the traditional method of frequency analysis method for target detection,in the letter mix relatively low under strong interference,resulting in a higher false alarm probability. A target detection algorithm for underwater weapon in the background of strong sea water reverberation is proposed. Strong sea reverberation interference for ship target echo model is first constructed,calculating self correlation matched filtering of ship target echo model,extracting echo signal of high order spectral characteristics,to achieve target signal blind source separation,to achieve the purpose of target detection. The simulation results show that while the proposed algorithm is used for target detection,accurate detection probability is higher,and the false alarm probability is reduced.
作者 赵威
机构地区 中国人民解放军
出处 《智能计算机与应用》 2016年第2期51-54,共4页 Intelligent Computer and Applications
关键词 海水混响 水中兵器 目标检测 盲源分离 sea water reverberation underwater weapon target detection blind source separation
  • 相关文献

参考文献10

二级参考文献74

共引文献291

同被引文献179

  • 1程永.面源红外假目标特征参数分析[J].水雷战与舰船防护,2012,20(1):72-73. 被引量:6
  • 2夏红伟,翟彦斌,马广程,邓雅,王常虹.基于混沌粒子群优化算法的空间机械臂轨迹规划算法[J].中国惯性技术学报,2014,12(2):211-216. 被引量:13
  • 3武思军,张锦中,张曙.阵列波束的零陷加宽算法研究[J].哈尔滨工程大学学报,2004,25(5):658-661. 被引量:44
  • 4聂东虎,李雪耀,张汝波,彭圆,林良骥.混响背景下水下目标回声的高斯小波检测[J].模式识别与人工智能,2005,18(5):582-587. 被引量:5
  • 5E1-MEZOUAR M C, KPALMA K, TALEB N, et al. A pan- sharpening based on the non-subsampled contourlet transform: Application to worldview - 2 imagery [ J ]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (5) :1806-1815.
  • 6YANG Shuyuan, WANG Min, JIAO Licheng. Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis[ J]. Information Fusion, 2012, 13(3) :177-184.
  • 7ST-CHARLES P, BILODEAU G, BERGEVIN R. SuBSENSE: A universal change detection method with local adaptive sensitivity [ J ]. IEEE Transactions on Image Processing, 2015, 24( 1 ) : 359-373.
  • 8MOGHADAM A A, KUMAR M, RADHA H. Common and innovative visuals: a sparsity modeling framework for video [ J ]. IEEE Transactions on Image Processing, 2014, 25(9) : 4055-4069.
  • 9ALEXE B, DESELAERS T, FERRARI V. Measuring the objectness of image windows [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 ( 11 ) : 2189-2202.
  • 10PATCHARAMANEEPAKRON P, ARMOUR S, and DOUFEXI A. Coordinated beamforming schemes based on modified signal-to- leakage-plus-noise ratio precoding de- signs[J]. IET Communications, 2015, 9(4): 558-567.

引证文献32

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部