期刊文献+

基于PCA神经网络的葡萄酒评价模型研究 被引量:2

Research of the wine evaluation model based on PCA & neural network
下载PDF
导出
摘要 利用主成分分析与RBF神经网络相结合,建立葡萄酒质量评价预报模型,并进行训练和仿真验证。该模型运用SPSS软件对葡萄酒中影响风味指标进行主成分分析,将多变量、非线性的原始数据进行降维,保留原始信息的主要信息,把原来若干个属性变量综合成几个不相关主成分分量;再以计算结果作为RBF网络的输入数据,葡萄酒的感官评价得分作为网络的输出数据,建立葡萄酒主要理化指标与葡萄酒质量的关系模型。结果表明:该评价模型的建立,缩短了葡萄酒评价的周期,克服了品酒师聚集的困难;与传统RBF网络相比,大大简化了网络结构,提高了网络的训练速度和预报精度,为质量评价问题提供了一种的研究思路。 Using the principal component analysis combined with RBF neural network,to set up the wine quality forecast model,meanwhile,training and simulating it. By using the SPSS software,realize principal component analysis on the wine flavor indexes,which reducing the multivariable and nonlinear dimension of primary data,retaining the original information of the main information,associating with the original several attribute variables to be synthesized into a few principal components. The calculation results are regarded as input of RBF network,the wine sensory evaluation score as the output of the network,to set up the main physical and chemical indicators with the wine quality relationship model. The results show that,the evaluation model has shorten the wine evaluation period,overcome the difficulty of wine taster gathering. Compared with the traditional RBF network,simplify the network structure,improve the network training speed and prediction accuracy,at the same time,provide a research way for quality evaluation.
出处 《智能计算机与应用》 2016年第2期67-69,共3页 Intelligent Computer and Applications
基金 国家级大学生创新创业训练计划项目(201410081012)
关键词 主成分分析 RBF神经网络 评价模型 理化指标 PCA RBF neural network evaluation model physical and chemical indicators
  • 相关文献

参考文献7

二级参考文献40

  • 1李映颖,朱立贵,张德全,姚本军,杜友杰,冯彪.基于BP和RBF神经网络对试飞数据预处理比较研究[J].计量与测试技术,2009,36(2):1-2. 被引量:6
  • 2俞秋阳,朱斌,郭伟.基于RBF神经网络的短期负荷预测模型设计[J].继电器,2004,32(17):34-37. 被引量:10
  • 3Cortez P,Cerdeira A,Almeida F,et al..Modeling wine preferences by data mining from physicochemical properties[J].Decision Support Systems,2009,47 (4):547-553.
  • 4赵光鳌.葡萄酒酿造学原理及应用[M].北京:中国轻工业出版社,2001.516-519.
  • 5Ranaweera D K, Hubele N F. Application of radial basis function neuralnetwork model for short-term load forecasting[J]. IEE Proceedings on Generation, Transmission and Distribution, 1995, 142(1): 45-50.
  • 6席云华,张尧.RBF神经网络在短期负荷预测中的应用[C].//中国高等学校电力系统及其自动化专业第二十二届学术年会,2006.
  • 7Karayiannis N B, Balasubramanian M, Malki H A. Evaluation of cosine radial basis function neural networks on electric power load forecasting[C].//Neural Networks, 2003. Proceedings of the International Joint Conference on, 2003(3): 2100-2105.
  • 8JIA Zheng-yuan, TIAN Li. Short-term power load foreasting based on fuzz-j-RBF neutra| network[C], ff Risk Management & Englneer{ng Management, 2008. ICRMEM '08 International Conference on: 349 - 352.
  • 9ZHU You-chart, HE Yu-jun. Short-term load forecasting model using fuzzy C means based radial basis function network[C]. // Intelligent Systems Design and Applications, 2006. ISDA '06. Sixth International Conference on, 1 : 579 - 582.
  • 10CHANG Yu-Jian, WANG Shuo-He, SUN Hai-Yan. Research of short-term load forecasting algorithm based on wavelet analysis and radial basis function neural network[C]. // Power Electronics and Intelligent Transportation System (PEITS), 2009 2nd International Conference on, 1:81-84.

共引文献158

同被引文献27

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部