期刊文献+

Examining the properties and therapeutic potential of glial restricted precursors in spinal cord injury 被引量:2

Examining the properties and therapeutic potential of glial restricted precursors in spinal cord injury
下载PDF
导出
摘要 In the aftermath of spinal cord injury,glial restricted precursors(GRPs) and immature astrocytes offer the potential to modulate the inflammatory environment of the injured spinal cord and promote host axon regeneration.Nevertheless clinical application of cellular therapy for the repair of spinal cord injury requires strict quality-assured protocols for large-scale production and preservation that necessitates long-term in vitro expansion.Importantly,such processes have the potential to alter the phenotypic and functional properties and thus therapeutic potential of these cells.Furthermore,clinical use of cellular therapies may be limited by the inflammatory microenvironment of the injured spinal cord,altering the phenotypic and functional properties of grafted cells.This report simulates the process of large-scale GRP production and demonstrates the permissive properties of GRP following long-term in vitro culture.Furthermore,we defined the phenotypic and functional properties of GRP in the presence of inflammatory factors,and call attention to the importance of the microenvironment of grafted cells,underscoring the importance of modulating the environment of the injured spinal cord. In the aftermath of spinal cord injury,glial restricted precursors(GRPs) and immature astrocytes offer the potential to modulate the inflammatory environment of the injured spinal cord and promote host axon regeneration.Nevertheless clinical application of cellular therapy for the repair of spinal cord injury requires strict quality-assured protocols for large-scale production and preservation that necessitates long-term in vitro expansion.Importantly,such processes have the potential to alter the phenotypic and functional properties and thus therapeutic potential of these cells.Furthermore,clinical use of cellular therapies may be limited by the inflammatory microenvironment of the injured spinal cord,altering the phenotypic and functional properties of grafted cells.This report simulates the process of large-scale GRP production and demonstrates the permissive properties of GRP following long-term in vitro culture.Furthermore,we defined the phenotypic and functional properties of GRP in the presence of inflammatory factors,and call attention to the importance of the microenvironment of grafted cells,underscoring the importance of modulating the environment of the injured spinal cord.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期529-533,共5页 中国神经再生研究(英文版)
基金 supported by NIH PO1 NS055976,CraigH.Neilsen Foundation
关键词 glial restricted precursor spinal cord injury astrocytes axon regeneration inflammatory factors long-term culture glial restricted precursor spinal cord injury astrocytes axon regeneration inflammatory factors long-term culture
  • 相关文献

参考文献1

共引文献2

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部