期刊文献+

基于非局部全变差和部分支撑已知的CS-MR图像重建方法 被引量:3

Compressed Sensing MR Image Reconstruction Based on Nonlocal Total Variation and Partially Known Support
下载PDF
导出
摘要 提出一种基于压缩感知(CS)的磁共振(MR)图像重建方法.利用参考图像和目标图像结构的相似性,提取参考图像在小波域中L个大系数的索引集作为目标图像的已知支撑集,约束已知支撑集补集中小波系数的l1范数.此外,采用非局部全变差(NLTV)作为规整化项构造目标函数,通过快速合成分离算法(FCSA)重建目标图像.仿真结果证明,该方法能有效保留图像的边缘和细节信息,抑制噪声干扰,在相同采样数据量下,重建性能优于经典CS-MRI和其他同类方法. By exploiting the similarity of the structure between the reference and the target images,a novel compressed sensing(CS)-based reconstruction method was proposed for MR image.Indexes of the Llargest wavelet coefficients of the reference image were extracted and regarded as the known part of the desired target images support,and the l1 norm of the wavelet coefficients belonging to the complement to the known support was constrained.Furthermore,the nonlocal total variation(NLTV)was utilized as a regularization term to construct the objective function.Then the target image was reconstructed via a fast composite splitting algorithm(FCSA).Experimental results demonstrate that the proposed method can preserve edges and details while suppressing noise efficiently.It outperforms conventional CS-MRI and other similar reconstruction methods under the same sampling rate.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2016年第3期308-313,共6页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61077022)
关键词 核磁共振成像 压缩感知 非局部全变差 Modified-CS 快速合成分离算法 magnetic resonance imaging compressed sensing nonlocal total variation Modified CS fast composite splitting algorithm
  • 相关文献

参考文献18

  • 1Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52 (4):1289 -1306.
  • 2Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006,52(1) :6 - 18.
  • 3Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J].IEEE Transactions on Information Theory, 2006, 52 (2) : 489 - 509.
  • 4Lustig M, Donoho D L, Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR imaging [J]. Magn Reson Med, 2007, 58(6) :1182- 1195.
  • 5Jung H, Sung K, Nayak K S, et al. k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI[J]. Magn Reson Med, 2009, 61(1) :103 - 116.
  • 6Trzasko J, Manduea A. Highly undersampled magnetic resonance image reconstruction via homotopic 10- minimization [J]. IEEE Transactions on Medical Imaging, 2009,28(1) :106 - 121.
  • 7Haldar J P, Hernando D, Liang Z P. Compressed- sensing MRI with random encoding [J].IEEE Transactions on Medical Imaging, 2011,30 (4).. 893 - 903.
  • 8Du H Q, Lam F. Compressed sensing MR image recon- struction using a motion-compensated reference [J]. Magn Reson Imaging, 2012,30(7) :954 - 963.
  • 9Peng X, Du H Q, Lain F. Reference-driven MR image reconstruction with sparsity and support constraints[C]// IEEE International Symposium on Biomedical Imaging. Chicago, USA: [s. n. ], 2011:89 - 92.
  • 10Lam F, Haldar J P, Liang Z P. Motion compensation for reference-constrained image reconstruction from limited data [C] // IEEE International Symposium on Biomedical Imaging. Chicago, USA: [s. n.], 2011: 73 -76.

同被引文献16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部