期刊文献+

两种模糊互模拟的比较

Comparisons between Two Kinds of Fuzzy Bisimulations
原文传递
导出
摘要 本文是在模糊转移系统上,借鉴概率互模拟的思想,首先通过关系提升以及关系的闭集分别定义了两种模糊互模拟。然后从关系与点两个角度比较这两种定义,我们得到:在一般的关系上这两种定义是不同的,而在点上这两种定义是一致的。 In virtue of some ideas of probabilistic bisimulations, this paper on the fuzzy transition systems first defines two kinds of fuzzy bisimulations based on relation lifting and closed subsets of some binary relation, respectively. Then from two different points of view we compare these two definitions and get that on the general relation these two definitions are different, however, on the points they coincide.
出处 《模糊系统与数学》 CSCD 北大核心 2015年第6期138-144,共7页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(61300048) 浙江省自然科学基金资助项目(LY13F020046) 浙江省教育厅基金资助项目(Y201223001)
关键词 模糊转移系统 互模拟 关系提升 R-闭集 Fuzzy Transition System Bisimulation Relation Lifting R-closed Set
  • 相关文献

参考文献14

  • 1Cao Y Z, Chen G Q, Kerre E E. Bisimulations for fuzzy transition systems [J]. IEEE Transactions on FuzzySystems, 2010,19 - 540-552.
  • 2Cao Y Z,Sun S X,Wang H Q,Chen G Q. A behavioral distance for fuzzytransition systems[J]. IEEE Transactions on Fuzzy Systems, 2013,21 (4) : 735 - 747.
  • 3Ciric M, Ignjatovic J, Damljanovic N, Basic M. Bisimulations for fuzzy automata[J]. Fuzzy Sets and Systems,2012, 186:100-139.
  • 4D' Errico L, Loreti M. A process algebra approach to fuzzy reasoning fC] // Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, 2009 : 1136- 1141.
  • 5Desharnais J,Edalat A,Panangaden P. Bisimulation for labelled Markov processes[J]. Information and Computation, 2002,179(2) - 163- 193.
  • 6Hermanns H, et al. Probabilistic logical characterization[J]. Information and Computation, 2011,209 (2) : 154- 172.
  • 7Ignjatovic J,Ciric M,Simovic V. Fuzzy relation equations and subsystems of fuzzy transition systems[J]. Knowledge Based Systems, 2013,38 : 48- 61.
  • 8Jonsson B, Larsen K G. Specification and refinement of probabilistic processes[C]//Proc. 6th Annu. IEEE Symp. Logic in Computer Science (LICS 1991) ,Amsterdam, 1991 : 266-277.
  • 9Kupferman O, Lustig Y. Latticed simulation relationsand games[J]. International Journal on the Foundations of Computer Science, 2010,21 (2) : 167 - 189.
  • 10Milner R. A calculus for communicating systems[J]. Lecture Notes in Computer Science,1980:92.

二级参考文献13

  • 1Blom S, Orzan S. A distributed algorithm for strong bisimulation redection of state spaces[J]. Electronic Notes in Theoretical Computer Science, 2002,68 (4).
  • 2Aceto L, Ingolfsdottir A. A characterization of finitary bisimulation[J]. Information Processing Letters, 1997,64:127-134.
  • 3Baier C, Hermanns H, Katoen J-P, Wolf V. Bisimulation and simulation relations for Markov chains[J]. Eledtronic Notes in Theoretical Computer Science, 2006,162: 73- 78.
  • 4Haghverdi E, Tabuada P, Pappas G J. Bisimulation relations for dynamical, control,and hybrid systems[J]. Theoretical Computer Science, 2005,342 : 229-261.
  • 5Haghverdi E, Tabuada P, Pappas G. Bisimulation relations for dynamical and control systems[J]. Electronic Notes in Theoretical Computer Science, 2003,69.
  • 6Andova S, et al, Branching bisimulation for probabilistic systems: characteristics.and decidability [J]. Theoretical Computer Science, 2006,356 : 325- 355.
  • 7Buchholz P. Bisimulation relations for weighted automata[J]. Theoretical Computer Science, 2008,393 : 109- 123.
  • 8Tabuada P. Controller synthesis for bisimulation equivalence[J]. System and Control Letters,in press.
  • 9Petkovie T. Congruence and homomorphisms of fuzzy automata[J]. Fuzzy Sets and Systems,2006,157:444-458.
  • 10Eloranta J, Tienari M, Valmari A. Essential transitions to bisimulation equivalences[J]. Theoretical Computer Science, 1997,179 : 397-419.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部