期刊文献+

Torus to Torus Intersection

Torus to Torus Intersection
下载PDF
导出
摘要 The most difficult problem in surface intersection is to determinate all the initial tracing points. Collinear normal line is a power tool for solving this problem. A lemma about the existence of collinear normal line between two toil is presented, based on this lemma an algorithm for finding all the initial tracing points is implemented, numerical examples show that it is robust and efficient. The most difficult problem in surface intersection is to determinate all the initial tracing points. Collinear normal line is a power tool for solving this problem. A lemma about the existence of collinear normal line between two toil is presented, based on this lemma an algorithm for finding all the initial tracing points is implemented, numerical examples show that it is robust and efficient.
出处 《Computer Aided Drafting,Design and Manufacturing》 2015年第2期31-35,共5页 计算机辅助绘图设计与制造(英文版)
基金 Supported by National Science and Technology Major Project(No.2013ZX04011031)
关键词 collinear normal line surface intersection torus surface collinear normal line surface intersection torus surface
  • 相关文献

参考文献2

二级参考文献13

  • 1Piegl L. Geometric method of intersecting natural quadrics represented in trimmed surface form[J].Computer-Aided Design, 1989, 21 (4): 201-211.
  • 2Kriezis G A, Patrikalakis N M, Wolter F-E. Topological and differential-equation method for surface intersections [J]. Computer-Aided Design, 1992, 24(1):41-45.
  • 3Kriezis G A, Prakash P V, Patrikalakis N M. Method for intersection algebraic surfaces with rational polynomial patches[J]. Computer-Aided Design, 1990, 22(10):645-654.
  • 4Ku-Jin Kim, Myung-Soo Kim. Toms/sphere intersection based on a configuration space approach[J]. Graphical Models and Image Processing, 1998, 60(1): 77-92.
  • 5唐荣锡,CAD/CAM技术,1994年
  • 6陶建伟,中国科学院计算所CAD开放实验室年报,1992年
  • 7Wang E L,Product Modeling for Computer-Aided Design and Manufacturing,1991年
  • 8Cheng K P,Theory and Practice of Geometric Modeling,1989年,187页
  • 9张锦炎,微分动力系统导论,1986年
  • 10Piegl L. Geometric method of intersecting natural quadrics represented in trimmed surface form[J]. Computer-Aided Design, 1989, 21(4): 201-211.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部