摘要
基于喷洒杀虫剂及投放病虫的综合控制害虫策略,建立了具有脉冲控制的微分方程模型.利用脉冲微分方程的Floquet定理、比较定理,证明了害虫灭绝周期解的全局渐近稳定性与系统的持久性,并利用分支理论给出了正周期解存在的分支参数.
Based on the integrated control strategy with spraying pesticides and releasing infective pests to control pests,we establish a model of differential equations with impulsive control. Using the Floquet Theorem of impulsive differential equations and the Comparison Theorem,the globally asymptotical stability of the periodic solution of susceptible pest eradication and the permanence of the system are proven,and using bifurcation theory the bifurcation parameter for existence of the positive periodic solution is given.
出处
《福州大学学报(自然科学版)》
CAS
北大核心
2016年第2期156-163,共8页
Journal of Fuzhou University(Natural Science Edition)
基金
国家自然科学基金资助项目(61070242)
辽宁省教育厅基金资助项目(L2012404)
关键词
脉冲控制
害虫灭绝
全局渐近稳定
持久性
正周期解
impulsive control
pest eradication
globally asymptotical stability
permanence
positive periodic solution