期刊文献+

基于脉冲控制的害虫管理模型 被引量:3

The pest management model with impulsive control
原文传递
导出
摘要 基于喷洒杀虫剂及投放病虫的综合控制害虫策略,建立了具有脉冲控制的微分方程模型.利用脉冲微分方程的Floquet定理、比较定理,证明了害虫灭绝周期解的全局渐近稳定性与系统的持久性,并利用分支理论给出了正周期解存在的分支参数. Based on the integrated control strategy with spraying pesticides and releasing infective pests to control pests,we establish a model of differential equations with impulsive control. Using the Floquet Theorem of impulsive differential equations and the Comparison Theorem,the globally asymptotical stability of the periodic solution of susceptible pest eradication and the permanence of the system are proven,and using bifurcation theory the bifurcation parameter for existence of the positive periodic solution is given.
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2016年第2期156-163,共8页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(61070242) 辽宁省教育厅基金资助项目(L2012404)
关键词 脉冲控制 害虫灭绝 全局渐近稳定 持久性 正周期解 impulsive control pest eradication globally asymptotical stability permanence positive periodic solution
  • 相关文献

参考文献6

  • 1ZHANG H, CHEN L S. Impulsive control strategies for pest management [J]. Journal Biological Systems, 2007, 15 (2) 235 - 260.
  • 2SHI R Q, CHEN L S. A predator- prey model with disease in the prey and two impulses for integrated pest management[J] Applied Mathematical Modelling, 2009, 33 (5) : 2 248 - 2 256.
  • 3张树文,陈兰荪.具有脉冲效应和综合害虫控制的捕食系统[J].系统科学与数学,2005,25(3):264-275. 被引量:30
  • 4焦建军,陈兰荪.具非线性传染率与生物化学控制的害虫管理S-I模型[J].应用数学和力学,2007,28(4):487-496. 被引量:7
  • 5WANG X, TAO Y D, SONG X Y. Analysis of pest- epidemic model by releasing diseased pest with impulsive transmission[J]. Nonlinear Dynamics, 2011, 65( 1 ) : 175 - 185.
  • 6LAKMECHE A, ARINO O. Bifurcation of nontrivial periodic solutions of impulsive differential equations arising chemotherapeu- tic treatment[J]. Dynamics of Continuous, Discrete and Impulsive System, 2000, 7 (2) : 265 -287.

二级参考文献16

  • 1Pandit S G. On the stability of impulsively perturbed differential systems. Bull. Austral Math.Soc., 1977, 17: 423-432.
  • 2Simeonov P S, Bainov D D. The second method of Liapunov for systems with impulsive effect.Tamkang J. Math., 1985, 16: 19-40.
  • 3Kulev G K, Bainov D D. On the asymptotic stability of systems with impulses by direct method of Lyapunov. J. Math. Anal. Appl., 1989, 140: 324-340.
  • 4Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulses.Math. Biosci., 1998, 149: 23-36.
  • 5Shulgin B, Stone L, Agur Z. Pulse vaccination strategy in the SIR epidemic model. Bull. Math.Biol., 1998, 60: 1-26.
  • 6Hirstova S G, Bainov D D. Existence of periodic solution of nonlinear systems of differential equations with impulsive effect. J. Math. Anal. Appl., 1985, 125: 192-202.
  • 7Ballinger G, Liu X. Permanence of population growth models with impulsive effects. Math. Comprt. Modelling, 1997, 26: 59-72.
  • 8Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equation. World Science, Singapore, 1989.
  • 9Barclay H J. Model for pest control using predator release, habitat management and pesticide release in combination. J. Applied Ecology, 1982, 19: 337-348.
  • 10Parker F D. Management of pest population by manipulating densities of both host and parasites through periodic releases. In: Huffaker,C.B.,ed. Biological control. New York:Plenum Press., 1971.

共引文献34

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部