期刊文献+

具有未知侧滑和打滑的WMR强化学习自适应神经网络控制

Reinforcement learning adaptive neural network control of WMR with unknown skidding and slipping
原文传递
导出
摘要 利用反演设计,提出一种强化学习自适应神经网络轮式移动机器人(WMR)轨迹跟踪控制方法.首先在极坐标下建立WMR的轨迹跟踪误差模型,并基于此设计运动学控制器.然后,针对WMR动力学系统,设计自适应神经网络控制器.结合强化学习机制,同时对系统未知侧滑、打滑和模型不确定性进行优化补偿,并引入鲁棒控制项来消除补偿误差的影响,进一步提高了控制效果.所提控制方法使得闭环系统稳定,且最终一致有界收敛,其有效性通过数值仿真结果得到了验证. A reinforcement learning adaptive neural network trajectory tracking control scheme is proposed for WMR,based on back stepping technique. Firstly,the trajectory tracking error model is established,and the kinematic controller is designed based on this model. Then,for WMR dynamic system,the adaptive neural network controller with reinforcement learning is designed,and unknown skidding,slipping and model uncertainties of the system are compensated optimally,the robust compensators are also used to eliminate the effects of compensating error,so the control performance is enhanced. The stability and ultimately uniformly bounded convergence of system are guaranteed with proposed control scheme. Simulations prove the validity of the proposed control scheme.
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2016年第2期219-224,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(51175084) 福建省自然科学基金资助项目(2015J05121) 福州大学科研启动基金资助项目(510078) 福州大学科技发展基金资助项目(650053)
关键词 轨迹跟踪 自适应神经网络 强化学习控制 非完整轮式移动机器人 不确定系统 trajectory tracking adaptive neural network reinforcement learning control nonholonom ic wheeled mobile robot uncertain system
  • 相关文献

参考文献2

二级参考文献23

  • 1Brockett R W. Asymptotic Stability and Feedback Stabilization[M]. Boston: Birkhauser, 1983.
  • 2Chaw D. Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates [J]. IEEE Transactions on Control Systems Tech- nology, 2004, 12(4): 637-644.
  • 3Chen Hong, Ma Miao-miao, Wang Hu, et al. Moving horizon H∞ tracking control of wheeled mobile robots with actuator saturation[J]. IEEE Transactions on Control Systems Technology, 2009, 17(2): 449-457.
  • 4Yoo S J. Adaptive tracking control for a class of wheeled mobile robots with unknown skidding and slipping[J]. IET Control Theory and Applications, 2010, 4(10): 2109-2119.
  • 5Jang J O. Adaptive neuro-fuzzy network control for a nobile robot[J]. Journal of Intelligent and Robotic Systems, 2011, 62(3-4): 567-586.
  • 6Chaw D. Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances [J]. IEEE Transactions on Fuzzy Systems, 2012, 20(3): 587-593.
  • 7Yang S X, Zhu A, Yuan G F, et al. A bioinspired neuro dynamics-based approach to tracking control of mobile robots[J]. IEEE Transactions on Indus- trial Electronics, 2012, 59(8): 3211-3220.
  • 8Lin Chuan-kai. A reinforcement learning adaptive fuzzy controller for robots[J]. Fuzzy Sets and Systems, 2003, 137(3): 339-352.
  • 9Campion G, Bastin G, D'Andrea-Novel B. Structural properties and classification of kinematic and dynamic models of wheel mobile robots[J]. IEEE Transactions on Robots and Automation, 1996,12 (1) :47- 62.
  • 10Park B S, Yoo S J, Park J B, et al. Adaptive out- put-feedback control for trajectory tracking of elec- trically driven nonholonomic mobile robots[J]. IET Control Theory and Applications, 2010,5 (6) : 830- 838.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部