期刊文献+

关于对偶Steiner多项式的根的注记 被引量:1

Notes on roots of the dual Steiner polynomial
下载PDF
导出
摘要 受凸体的Steiner多项式的启发,定义了星体的对偶Steiner多项式,并利用对偶Aleksandrov-Fenchel不等式讨论了对偶Steiner多项式的根.进而,得到了关于对偶Steiner多项式的根的一些不等式,这些不等式恰好是关于Steiner多项式的根的不等式的对偶形式. Motivated by the Steiner polynomial for convex bodies, the dual Steiner polynomial for star bodies is defined. Furthermore, roots of the dual Steiner polynomial are discussed by applying the dual AleksandrovFenchel inequality, and some inequalities involving roots of the dual Steiner polynomial are obtained, where these inequalities are just dual forms of those of the Steiner polynomial.
出处 《纯粹数学与应用数学》 2016年第2期111-118,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(11161019 11561020) 安徽省高校自然科学研究重点项目(KJ2016A635) 甘肃省科技计划项目(145RJZG227)
关键词 Steiner多项式 对偶Steiner多项式 对偶Aleksandrov-Fenchel不等式 The Steiner polynomial the dual Steiner polynomial the dual Aleksandrov-Fenchel inequality
  • 相关文献

参考文献11

  • 1Schneider R. Convex Bodies. The Brunn-Minkowski Theory [M]. Encyclopedia of Mathematics and its Applications 44. Cambridge: Cambridge University Press, 1993.
  • 2Steiner J. Uber parallel Fl~chen [J]. Ges. Werke, 1882, 2: 245-308.
  • 3Henk M, Hern~ndez Cifre M A. Notes on the roots of Steiner polynomials [J]. Rev. Mat. Iberoamericana, 2008, 24(2):631-644.
  • 4Henk M, Hern~ndez Cifre M A. On the location of roots of the Steiner polynomials [J]. Bull. Braz. Math. Soc., 2011, 42(1): 153-170.
  • 5Hern~ndez Cifre M A, Saorfn E. On the roots of the Steiner polynomial of a 3-dimensional convex body [J]. Adv. Geom., 2007, 7:275-294.
  • 6Jetter M. Bounds on the roots of the Steiner polynomial [J]. Adv. Geom., 2011, 11:313-317.
  • 7Sangwine-Yager J R. Bonnesen-Style inequalities for Minkowski relative geometry [J]. Transactions of the American Mathematical Society, 1988, 307(1): 373-382.
  • 8Oda T. Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties [M]. Berlin: Springer-Verlag, 1988.
  • 9Sangwine-Yager J R. Mixed Volumes, in:Handbook of Convex Geometry [M]. Amsterdam: North-Holland, 1993.
  • 10Lutwak E. Dual mixed volumes [J]. Pacific J. Math., 1975, 58: 531-538.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部